University of Kentucky, Physics 361 EXAM 1, 2008-02-08 11:00-11:50

Instructions: The exam is closed book and timed (50 minutes), so pace yourself. Problems will be graded on both technique and answer, so show your work. A formula sheet is on the last page.

Part I—Short Answer

[3 pts] 1. a) List three phenomena demonstrating the particle nature of light.

[2 pts] b) List two phenomena demonstrating the wave nature of matter.

[2 pts] c) List two examples of quantization of energy states.

[3 pts] 2. a) Why is Compton scattering non-classical?

[5 pts] b) List two ways in which the Bohr model of the atom is non-classical.

[5 pts] 3. a) What is the relationship between Planck's law and the Stefan-Boltzmann law?

[5 pts] b) What is the relationship between Planck's law and Wein's displacement law?

[5 pts] 4. What is the significance of negative energy states of the hydrogen atom? (i.e. Why are there not any positive energy states in Bohr's formula for E_n ?)

[5 pts] 5. a) Why do α -scattering data disagree with the Rutherford formula at large scattering angle for very large α -particle energies?

[5 pts] b) Why do the data disagree with the Rutherford formula at very small scattering angles? (hint: think about the Moseley *b*-parameter)

Part II—Calculation

[10 pts] 6. The luminosity (total power radiated) of the sun is 3.85×10^{26} W. What is the surface temperature of the sun? (radius $r = 6.955 \times 10^8$ m, surface area $= 4\pi r^2$) What is the most intense wavelength of sunlight? [0 pts] What color is it?

[10 pts] 7. A red ($\lambda = 600$ nm) laser pointer with 5 mW of power shines on Cesium, with a work function of 1.9 eV. What is the stopping voltage? What is the maximum possible photo-current (in mA)?

[10 pts] 8. Calculate the wavelength of an electron of energy 54 eV.

 $[10~{\rm pts}]$ 9. At what momentum (in ${\rm MeV/c})$ does the de Broglie wavelength of the proton equal its Compton wavelength?

Part III—Derivation

[10 pts] 10. Show that de Broglie's hypothesis of electrons forming standing waves around their orbitals is equivalent to Bohr's quantization of angular momentum.

Physical Constants and Useful Combinations:

r nysical Constants and	Userur v	Compina		
Speed of light	c		$3.00 \times 10^8 \text{ m/s}$	
Planck's constant	h		$6.63 \times 10^{-34} \text{ Js};$	hc = 1240 eV nm
	$\hbar = h/2\pi$,	$\hbar c = 197 \text{ eV} \text{ nm}$
Coulomb force constant	$k_e = 1/4\pi\epsilon_0$		$8.99 \times 10^9 \text{ Nm}^2/\text{C};$	
Elementary charge	e		$1.602 \times 10^{-19} \text{ C};$	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
Fine structure constant	$lpha = k_e e^2/\hbar c$		$0.0730 \approx 1/137$	
Permeability of vacuum	μ_0		$4\pi \times 10^7 \text{ N/A}^2 = 4\pi \text{ mm G/A}; 1 \text{ T} = 10^4 \text{ G}$	
Gravitational constant	G		$6.67 imes 10^{-11} \ { m N} { m m}^2 / { m kg}^2$	
Avogadro's number	N_A		$6.02 imes 10^{23}$ /mol	
Boltzman's constant	k		$1.38 \times 10^{-23} \text{ J/K} = 25 \text{ meV}/293 \text{ K}$	
Gas constant	$R = N_A k$		$8.31 \mathrm{J/mol}\mathrm{K}$	
Compton wavelength	$\lambda_c = h/m_e c$		0.00243 nm	
Bohr radius	$a_0 = \hbar^2/m_e k_e e^2$		0.529 Å	
Ionization energy of H	$E_0 = m_e k_e^2 e^2 / 2\hbar^2$		13.6 eV	
Bohr magneton	$\mu_B = e\hbar/2m_e$		$9.27 \times 10^{-24} \text{ J/T}$	
Unified mass unit	u		$1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV/c}^2$	
Mass of electron	m_e		$9.11 \times 10^{-31} \text{ kg} = 0.511 \text{ MeV/c}^2$	
proton	m_p		$1.67 \times 10^{-27} \text{ kg} = 9$	0.00000000000000000000000000000000000
α -particle	m_{lpha}		$6.64 \times 10^{-27} \text{ kg} = 3$	$3727 \ \mathrm{MeV/c^2}$
Wein's displacement law Rayleigh-Jeans formula Planck's radiation law Photoelectric effect Bragg diffraction Compton effect Rydberg-Ritz formula Impact parameter Scattered fraction f		$R = \sigma T^{4} \qquad \sigma = 5.67 \times 10^{-8} \text{ W/m}^{2} \text{K}^{4}$ $\lambda_{m}T = 2.898 \times 10^{-3} \text{ m K}$ $u(\lambda) = 8\pi kT \lambda^{-4}$ $u(\lambda) = \frac{8\pi hc\lambda^{-5}}{e^{hc/\lambda kT} - 1}; \qquad E_{n} = n hf = n hc/\lambda$ $eV_{0} = hf - \phi$ $m\lambda = 2d \sin \theta$ $\lambda_{2} - \lambda_{1} = \lambda_{c}(1 - \cos \theta); \qquad \lambda_{c} = \frac{h}{m_{e}c}$ $\frac{1}{\lambda_{mn}} = R\left(\frac{1}{m^{2}} - \frac{1}{n^{2}}\right), n > m$ $b = \frac{k_{e}q_{\alpha}Q}{m_{\alpha}v^{2}} \cot \frac{\theta}{2}$ $f = \pi b^{2} nt$		
Number of scattered α 's observed		$\Delta N = \left(\frac{I_0 A_{sc} nt}{r^2}\right) \left(\frac{Zk_e e^2}{2E_k}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}}$		
Size of nucleus		$r_d = \frac{k_e q_\alpha Q}{\frac{1}{2}m_\alpha v^2}$		
Bohr's postulates		$L = n\hbar$ for integer n ; $hf = E_n - E_m$		
atomic energy levels		$E_n = -\frac{Z^2 E_0}{n^2}$ where $E_0 = \frac{m_e k_e^2 e^2}{2\hbar^2} = 13.6 \text{ eV}$		
atomic orbital radii		$r_n = \frac{n^2 a_0}{Z}$ where $a_0 = \frac{\hbar^2}{m_e k_e e^2} = 0.529$ Å		
reduced mass		$\mu = \frac{mM}{m_e\kappa_e}e^{-\omega}$		
Moseley equation		$\mu = \frac{mM}{m+M}$ $f^{1/2} = A_n(Z-b)$		
De Broglie relations		$f = E/h$ and $\lambda = h/p$		
Davisson and Germer diffraction		$f = D/n$ and $\lambda = n/p$ $n\lambda = D\sin\phi$		
Davisson and Germer un	110001011	m - D s	μι γ	