University of Kentucky, Physics 361 EXAM 1, 2010-02-10 11:00-11:50

Instructions: The exam is closed book and timed (50 minutes), so pace yourself. Problems will be graded on both technique and answer, so show your work. A formula sheet is on the last page.

Part I—Short Answer

[3 pts] 1. a) List three phenomena demonstrating the particle nature of light.

[2 pts] b) List two phenomena demonstrating the wave nature of matter.

[4 pts] 2. a) Draw two blackbody spectra at different temperatures, and indicate features illustrating the Stefan-Boltzmann and Wein's displacement laws.

[2 pts] b) Why is blackbody radiation suppressed at long wavelengths?

[2 pts] c) Why is blackbody radiation suppressed at short wavelengths?

[3 pts] 3. Why are two crystals needed to measure the Compton effect?

[3 pts] 4. What was de Broglie's interpretation of Bohr's quantization condition $L = n\hbar$?

[6 pts] 5. In the following diagram, label the impact parameter and scattering angle. Draw the scattering trajectories starting at a) and c). Show the location of nucleus with an ' \times '. Draw a detector and label the corresponding $d\sigma$ and $d\Omega$.

Part II—Calculation

[10 pts] 6. Given the following distribution of energy in a system of particles, a) how many particles are there? b) what is the total energy? c) what is the average energy? [Ignore g(E)].

[10 pts] 7. The smallest scattering angle of X-rays from a crystal with 0.2 nm lattice spacing is 5°. a) What is the corresponding wavelength? b) What voltage was applied to the X-ray tube?

[10 pts] 8. Suppose Rutherford were able to peek at alpha 'bullet-holes' in his gold sample, and saw the result below. Using ratio of areas, What would he measure for the cross section σ ?

[10 pts] 9. Calculate the wavelength of a proton with energy 1 MeV.

[10 pts bonus] 10. Starting from E_n in the Bohr model, derive the value of R in the Rydberg-Ritz formula.

Physical Constants and Useful Combinations:

i nysicai Constants and	Oserui Oombina		
Speed of light	С	$3.00 \times 10^8 \text{ m/s}$	
Planck's constant	h	$6.63 \times 10^{-34} \text{ Js};$	hc = 1240 eV nm
	$\hbar = h/2\pi$	$1.05 \times 10^{-34} \text{ Js};$	$\hbar c = 197 \text{ eV} \text{ nm}$
Coulomb force constant	$k_e = 1/4\pi\epsilon_0$	$8.99 \times 10^9 \text{ Nm}^2/\text{C};$	
Elementary charge	e	$1.602 \times 10^{-19} \text{ C};$	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$
Fine structure constant	$\alpha = k_e e^2 / \hbar c$	$0.0730 \approx 1/137$	
Permeability of vacuum	μ_0	$4\pi \times 10^7 \text{ N/A}^2 = 4\pi \text{ mm G/A}; 1 \text{ T} = 10^4 \text{ G}$	
Gravitational constant	G	$6.67 imes 10^{-11} \ { m N} { m m}^2 / { m kg}^2$	
Avogadro's number	N_A	$6.02 imes 10^{23}$ /mol	
Boltzman's constant	k	$1.38 \times 10^{-23} \text{ J/K} = 25 \text{ meV}/293 \text{ K}$	
Gas constant	$R = N_A k$	$8.31 \mathrm{J/molK}$	
Compton wavelength	$\lambda_c = h/m_e c$	0.00243 nm	
Bohr radius	$a_0 = \hbar^2/m_e k_e e^2$	0.529 Å	
Ionization energy of H	$E_0 = m_e k_e^2 e^2 / 2\hbar^2$	13.6 eV	
Bohr magneton	$\mu_B = e\hbar/2m_e$	$9.27 \times 10^{-24} \text{ J/T}$	
Unified mass unit	u	$1.66 \times 10^{-27} \text{ kg} = 9$	
Mass of electron	m_e	$9.11 \times 10^{-31} \text{ kg} = 0$	
proton	m_p	$1.67 \times 10^{-27} \text{ kg} = 9$,
α -particle	m_{lpha}	$6.64 \times 10^{-27} \text{ kg} = 3$	3727 MeV/c^2
Formulas: Stefan-Boltzmann law Wein's displacement law	$\lambda_m T = 2$	$\sigma = 5.67 \times 10^{-8} \text{ W}$ 2.898 × 10 ⁻³ m K	V/m^2K^4
Rayleigh-Jeans formula	$u(\lambda) = 8\pi kT\lambda^{-4}$		
Planck's radiation law	$u(\lambda) = 8\pi h c \lambda^{-5} / (e^{h c / \lambda k T} - 1); \qquad E_n = n h f$		
Photoelectric effect	$eV_0 = hf$	$-\phi$	
Bragg diffraction	$m\lambda = 2d\sin\theta$		
Compton effect	$\lambda_2 - \lambda_1 = \lambda_c (1 - \cos \theta)$		
Rydberg-Ritz formula	$rac{1}{\lambda_{mn}} \;=\; R\left(rac{1}{m^2}-rac{1}{n^2} ight), n>m$		
Impact parameter	$b = \frac{k_e q_\alpha Q}{m_\alpha v^2} \cot \frac{\theta}{2}$		
Differential cross section	$rac{d\sigma}{d\Omega} = rac{2\pi b db}{2\pi \sin heta d heta} = rac{\Delta N}{I_0 nt} rac{r^2}{A_{sc}}$		
α scattering		$\left(\frac{k_e e^2}{E_k}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}}$	
Size of nucleus	$r_d = \frac{k_e q_\alpha d}{\frac{1}{2}m_\alpha u}$		
Bohr's postulates		$hf = E_n - E_m$	
Atomic energy levels	$E_n = -Z^2$	$^{2}E_{0}/n^{2}$ where	$E_0 = \frac{m_e k_e^2 e^2}{2\hbar^2} = 13.6 \text{ eV}$
Atomic orbital radii	$r_n = \frac{n^2 a_0}{Z}$ where $a_0 = \frac{h^2}{m_e k_e e^2} = 0.529$ Å		$\frac{\hbar^2}{e^{k_e}e^2} = 0.529 \text{ Å}$
Reduced mass	$\mu = \frac{mM}{m+M}$		
Moseley equation	$f^{1/2} = A_n$	(Z-b)	
De Broglie relations	$f = E/h$ and $\lambda = h/p$		
Davisson and Germer diff	fraction $n\lambda = D \sin \theta$	$\mathrm{n}\phi$	