University of Kentucky, Physics 361
 EXAM 1, 2010-02-10 11:00-11:50

Instructions: The exam is closed book and timed (50 minutes), so pace yourself. Problems will be graded on both technique and answer, so show your work. A formula sheet is on the last page.

Part I-Short Answer

[3 pts] 1. a) List three phenomena demonstrating the particle nature of light.
$\left[\begin{array}{ll}{[2 \mathrm{pts}]} & \text { b) List two phenomena demonstrating the wave nature of matter. }\end{array}\right.$
[4 pts] 2. a) Draw two blackbody spectra at different temperatures, and indicate features illustrating the Stefan-Boltzmann and Wein's displacement laws.

$[2 \mathrm{pts}] \quad$ b) Why is blackbody radiation suppressed at long wavelengths?
$\left[\begin{array}{ll}{[2 \mathrm{pts}]} & \text { c) Why is blackbody radiation suppressed at short wavelengths? }\end{array}\right.$
[3 pts] 3. Why are two crystals needed to measure the Compton effect?
[3 pts] 4. What was de Broglie's interpretation of Bohr's quantization condition $L=n \hbar$?
[6 pts] 5. In the following diagram, label the impact parameter and scattering angle. Draw the scattering trajectories starting at a) and c). Show the location of nucleus with an ' x '. Draw a detector and label the corresponding $d \sigma$ and $d \Omega$.

Part II-Calculation

[10 pts] 6. Given the following distribution of energy in a system of particles, a) how many particles are there? b) what is the total energy? c) what is the average energy? [Ignore $g(E)$].

[10 pts] 7. The smallest scattering angle of X-rays from a crystal with 0.2 nm lattice spacing is 5°. a) What is the corresponding wavelength? b) What voltage was applied to the X-ray tube?
[10 pts] 8. Suppose Rutherford were able to peek at alpha 'bullet-holes' in his gold sample, and saw the result below. Using ratio of areas, What would he measure for the cross section σ ?

[10 pts] 9. Calculate the wavelength of a proton with energy 1 MeV .
[10 pts bonus] 10. Starting from E_{n} in the Bohr model, derive the value of R in the Rydberg-Ritz formula.

Physical Constants and Useful Combinations:

| Speed of light | c | $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ |
| :--- | :--- | :--- | :--- |
| Planck's constant | h | $6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} ; \quad h c=1240 \mathrm{eV} \mathrm{nm}$ |
| | $\hbar=h / 2 \pi$ | $1.05 \times 10^{-34} \mathrm{~J} \mathrm{~s} ; \quad \hbar c=197 \mathrm{eV} \mathrm{nm}$ |
| Coulomb force constant | $k_{e}=1 / 4 \pi \epsilon_{0}$ | $8.99 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C} ; \quad k_{e} e^{2}=1.44 \mathrm{eVnm}$ |
| Elementary charge | e | $1.602 \times 10^{-19} \mathrm{C} ; \quad 1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$ |
| Fine structure constant | $\alpha=k_{e} e^{2} / \hbar c$ | $0.0730 \approx 1 / 137$ |
| Permeability of vacuum | μ_{0} | $4 \pi \times 10^{7} \mathrm{~N} / \mathrm{A}^{2}=4 \pi \mathrm{~mm} \mathrm{G} / \mathrm{A} ; \quad 1 \mathrm{~T}=10^{4} \mathrm{G}$ |
| Gravitational constant | G | $6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$ |
| Avogadro's number | N_{A} | $6.02 \times 10^{23} / \mathrm{mol}$ |
| Boltzman's constant | k | $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}=25 \mathrm{meV} / 293 \mathrm{~K}$ |
| Gas constant | $R=N_{A} k$ | $8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K}$ |
| Compton wavelength | $\lambda_{c}=h / m_{e} c$ | 0.00243 nm |
| Bohr radius | $a_{0}=\hbar^{2} / m_{e} k_{e} e^{2}$ | $0.529 \AA$ |
| Ionization energy of H | $E_{0}=m_{e} k_{e} e^{2} / 2 \hbar^{2}$ | 13.6 eV |
| Bohr magneton | $\mu_{B}=e \hbar / 2 m_{e}$ | $9.27 \times 10^{-24} \mathrm{~J} / \mathrm{T}$ |
| Unified mass unit | u | $1.66 \times 10^{-27} \mathrm{~kg}=931 \mathrm{MeV} / \mathrm{c}^{2}$ |
| Mass of electron | m_{e} | $9.11 \times 10^{-31} \mathrm{~kg}=0.511 \mathrm{MeV} / \mathrm{c}^{2}$ |
| \quad proton | m_{p} | $1.67 \times 10^{-27} \mathrm{~kg}=938 \mathrm{MeV} / \mathrm{c}^{2}$ |
| α-particle | m_{α} | $6.64 \times 10^{-27} \mathrm{~kg}=3727 \mathrm{MeV} / \mathrm{c}^{2}$ |
| | | |

Formulas:
Stefan-Boltzmann law
Wein's displacement law
Rayleigh-Jeans formula
Planck's radiation law
Photoelectric effect
Bragg diffraction
Compton effect
Rydberg-Ritz formula
Impact parameter
Differential cross section
α scattering
Size of nucleus
Bohr's postulates
Atomic energy levels
Atomic orbital radii
Reduced mass
Moseley equation
De Broglie relations
Davisson and Germer diffraction
$R=\sigma T^{4} \quad \sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
$\lambda_{m} T=2.898 \times 10^{-3} \mathrm{mK}$
$u(\lambda)=8 \pi k T \lambda^{-4}$
$u(\lambda)=8 \pi h c \lambda^{-5} /\left(e^{h c / \lambda k T}-1\right) ; \quad E_{n}=n h f$
$e V_{0}=h f-\phi$
$m \lambda=2 d \sin \theta$
$\lambda_{2}-\lambda_{1}=\lambda_{c}(1-\cos \theta)$
$\frac{1}{\lambda_{m n}}=R\left(\frac{1}{m^{2}}-\frac{1}{n^{2}}\right), n>m$
$b=\frac{k_{e} q_{\alpha} Q}{m_{\alpha} v^{2}} \cot \frac{\theta}{2}$
$\frac{d \sigma}{d \Omega}=\frac{2 \pi b d b}{2 \pi \sin \theta d \theta}=\frac{\Delta N}{I_{0} n t} \frac{r^{2}}{A_{s c}}$
$\frac{d \sigma}{d \Omega}=\left(\frac{2 Z k_{e} e^{2}}{4 E_{k}}\right)^{2} \frac{1}{\sin ^{4} \frac{\theta}{2}}$
$r_{d}=\frac{k_{e} q_{\alpha} Q}{\frac{1}{2} m_{\alpha} v^{2}}$
$L=n \hbar ; \quad h f=E_{n}-E_{m}$
$E_{n}=-Z^{2} E_{0} / n^{2} \quad$ where $\quad E_{0}=\frac{m_{e} e_{e}^{2} e^{2}}{2 \hbar^{2}}=13.6 \mathrm{eV}$
$r_{n}=\frac{n^{2} a_{0}}{Z} \quad$ where $\quad a_{0}=\frac{\hbar^{2}}{m_{e} k_{e} e^{2}}=0.529 \AA$
$\mu=\frac{m M}{m+M}$
$f^{1 / 2}=A_{n}(Z-b)$
$f=E / h \quad$ and $\quad \lambda=h / p$
$n \lambda=D \sin \phi$

