University of Kentucky, Physics 361
 EXAM 2, 2008-03-18 18:00-20:00

Instructions: The exam is closed book and timed (120 minutes), so pace yourself. In particular, don't waste your time on the question worth [0 pts]. There are [100 pts] in total. Problems will be graded on both technique and answer, so show your work. Here is a compilation of formulas:

$$
\begin{array}{rlrl}
E=\hbar \omega & \Delta E \Delta t \geq \frac{\hbar}{2} \quad \hat{E} & =i \hbar \frac{\partial}{\partial t} \\
p=\hbar k & \Delta p \Delta x \geq \frac{\hbar}{2} & \hat{p} & =-i \hbar \frac{\partial}{\partial x} \\
L_{z} & =\hbar m \quad \Delta L_{z} \Delta \phi \geq \frac{\hbar}{2} \quad \hat{L}_{z} & =-i \hbar \frac{\partial}{\partial \phi} \\
\text { TDSE: } \quad & \frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)+V(x) \Psi(x, t) & =i \hbar \frac{\partial}{\partial t} \Psi(x, t) \\
\text { TISE: } \quad \frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)+V(x) \psi(x) & =E \psi(x) \\
\langle M\rangle=\int_{-\infty}^{\infty} \psi^{*} \hat{M} \psi d x \quad v_{p}=\frac{\omega}{k} & v_{g}=\frac{d \omega}{d k}
\end{array}
$$

Part I-Short Answer

[5 pts] 1. Name five requirements for $\Psi(x, t)$ to represent a quantum mechanical wave function.
[3 pts$] 2$. What is the relation between de Broglie matter waves and the Schrödinger equation?
[3 pts] 3. Why must the Schrödinger equation be linear?
[2 pts $] 4$. Why must \mathcal{E} be real, while Ψ may be real or imaginary?
[2 pts] 5. Why is the probability density written $\Psi^{*} \Psi$ instead of Ψ^{2} ?
[6 pts] 6. When the two pure waves $\Psi_{1}=\cos \left(k_{1} x-w_{1} t\right)$ and $\Psi_{2}=\cos \left(k_{2} x-w_{2} t\right)$ are superimposed, they add up to the function $\Psi=2 \cos \left(\frac{1}{2} \Delta k x-\frac{1}{2} \Delta w t\right) \cos (\bar{k} x-\bar{w} t)$. What is the group velocity of the train of packets? What is the phase velocity? What is the condition for no dispersion in terms of $k_{1,2}$ and $\omega_{1,2}$?
[0 pts] 7. a) What is the average wingspan of an African swallow?
[3 pts] b) Why are African swallows almost always unsuccessful in their attempts to tunnel through brick walls?
$[3 \mathrm{pts}] \quad$ c) List 3 more relevant applications or examples of quantum mechanical tunnelling.
[2 pts] 8. What is Δx and Δk for a pure harmonic wave of a single frequency and wavelength?
[4 pts] 9. How is $\Psi(x, t)$ different than a classical wave? How is it similar to a classical particle?
[3 pts] 10. a) What requirements does the angular wavefunction $\Phi(\phi)=e^{i 3.5 \phi}$ violate?
$[2 \mathrm{pts}] \quad$ b) What is the angular momentum of the wavefunction $\Phi(\phi)=e^{i 7 \phi}$?
[3 pts] c) Why is angular momentum always quantized for a particle in a central potential regardless of whether or not it is bound?
[2 pts] 11. Name two physical differences between the Schrödinger equation and the classical wave equation.
[2 pts] 12. What happens to the zero-point energy of a bound particle as the width of the box increases $L \rightarrow \infty$?
[4 pts$]$ 13. Why do electrons shot one at a time through a slit still produce an interference pattern? Why don't they once they are observed behind one slit?
[6 pts] 14. Draw the node lines of the 6 lowest states for infinite square wells over rectangular and circular domains. Show which states are degenerate.
[9 pts] 15. Drawn below is a wave packet $\psi(x)$ composed from the specified frequency component amplitudes A_{k}. Draw the corresponding wave-packet for each modified A_{k} spectrum.

Part II-Calculation

[12 pts] 16. Show that $\Psi(x)=A_{0} e^{-\frac{1}{2}\left(x / x_{0}\right)^{2}}$ is a wavefunction for the harmonic oscillator potential $V=\frac{1}{2} m \omega x^{2}$, and determine the value of x_{0}. Draw the fifth energy state wavefunction for a simple harmonic oscillator potential, paying special attention to curvature.
[12 pts] 17. Starting from the TISE, solve for the energy states E_{n} and the wavefunctions $\psi_{n}(x)$ of the infinite square well in one dimension. Normalize the wavefunctions. What is the full wavefunction $\Psi_{n}(x, t)$? What is the probability that a particle in the third energy state lies in the middle third of the box, i.e. $\frac{1}{3}<x<\frac{2}{3}$? Showing all steps except for evaluation of the integral, write down the expression for the expected value of momentum.

Part III-Derivation

[12 pts] 18. Starting from the time-dependent Schrödinger equation, perform separation of variables to derive the time-independent Schrödinger equation. What is the time dependence of the wave function? Hint: use $\Psi(x, t)=\psi(x) \cdot \phi(t)$. Obtain separate equations for $\psi(x)$ [TISE] and $\phi(t)$, and solve the equation for the time dependence $\phi(t)$.

