University of Kentucky, Physics 361 EXAM 2, 2009-03-13 11:00-11:50

Instructions: The exam is closed book and timed (50 minutes).

$$
\begin{array}{rlrl}
E=\hbar \omega & \Delta E \Delta t \geq \frac{\hbar}{2} & \hat{E}=i \hbar \frac{\partial}{\partial t} \\
p=\hbar k & \Delta p \Delta x \geq \frac{\hbar}{2} & \hat{p}=-i \hbar \frac{\partial}{\partial x} \\
L_{z}=\hbar m & \Delta L_{z} \Delta \phi \geq \frac{\hbar}{2} \quad \hat{L}_{z}=-i \hbar \frac{\partial}{\partial \phi} \\
& & \\
& \frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)+V(x) \Psi(x, t)=i \hbar \frac{\partial}{\partial t} \Psi(x, t) \\
& \frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x) \quad+V(x) \psi(x) \quad=E \psi(x) \\
\hbar c= & 197 \mathrm{eV} \mathrm{~nm} & k_{e} e^{2}=e^{2} / 4 \pi \epsilon_{0}=1.44 \mathrm{eV} \mathrm{~nm} \\
m_{e} c^{2}= & 0.511 \mathrm{MeV}, & m_{p} c^{2}=938 \mathrm{MeV} \\
E_{n}= & -Z^{2} E_{0} / n^{2} & E_{0}=m_{e} k_{e}^{2} e^{2} / 2 \hbar^{2}=13.6 \mathrm{eV} \\
r_{n}= & n^{2} a_{0} / Z & a_{0}=\hbar^{2} / m_{e} k_{e} e^{2}=0.529(\AA=0.1 \mathrm{~nm}) \\
\langle G\rangle= & \int_{-\infty}^{\infty} \psi^{*} \hat{G} \psi d x & \mu=\frac{m M}{m+M}
\end{array}
$$

Part I-Short Answer

[6 pts] 1. In the following diagram, label the impact parameter and scattering angle. Draw the scattering trajectories starting at a) and c). Show the location of nucleus with an ' x '. Draw a detector and label the corresponding differential cross section $d \sigma$ being measured. Rank the three trajectories as having the smallest (1) to largest (3) differential cross section.

[3 pts] 2. Using a picture and brief labels, show the analogy between tides on the Earth and hydrogen and deuterium atoms. Which atom has lower ground state energy?
[3 pts] 3. Why does the ideal harmonic oscillator have an infinite number of energy levels, while the finite square well has only a finite number of energy levels?
[2 pts] 4. What two energies are quantized in the Bohr model of atomic spectra?
[8 pts] 5. Match each of the following potential functions (middle) to the corresponding energy level (top), and to the corresponding 4th state wave function (bottom).

[4 pts] 6. Circle the wave function(s) which represent tunneling. What happens classically at the interface between positive and negative kinetic energy?

[5 pts] 7. a) Draw the wave function for the 10th excited state of the harmonic oscillator potential. b) Show two features of the wave function which illustrate the correspondence principle.
[4 pts] 8. How are momentum and position represented quantum mechanically?
[5 pts] 9. a) Draw the node lines of the first few wave functions of the infinite square well on a disk. b) Indicate the degeneracy of each state.

Part II-Short Calculation

[5 pts] 10. Derive the dispersion relation between w and k starting from $E=p^{2} / 2 m$. Compare this with terms in the time-dependent Schrödinger equation (circle the parts that are the same).
[10 pts] 11. Suppose Rutherford were able to peek at the alpha bullet-holes in his gold sample, and saw the result below. a) what would he measure for the nuclear cross section σ ? b) List two errors in this supposition.

[10 pts$]$ 12. a) Which of the following are eigenfunctions of the operator $\frac{\partial^{2}}{\partial x^{2}}$? b) Calculate the eigenvalue for each eigenfunction.
i) $e^{2 i x}$
ii) e^{-x}
iii) $\cos (3 x+4)$
iv) $3 x+4$
v) x^{2}

Part III-Full Problems

[15 pts] 13. Show that $\psi(x)=A \sin \left(k_{n} x\right)$ is a solution of the time-independent Schrödinger equation (TISE) for a particle in an infinite square well, with $U(x)=0$ for $0<x<L$ and $U(x)=\infty$ for $x<0$ or $x>L$. Show that the boundary conditions are satisfied on both sides of the well, and determine the values of k_{n} and therefore E_{n}. Normalize the wave functions.
[15 pts] 14. Use the solutions above to construct wave functions $\psi_{n m}(x, y)$ of a particle in a 2-D infinite well with a square boundary, ie. $U(x, y)=0$ for $0<x<L, \quad 0<y<L$, and $U(x, y)=\infty$ elsewhere, and calculate the energy values $E_{n m}$. Draw the node lines for the six lowest energy states, and show which ones are degenerate. No need to do a full separation of variables.

