University of Kentucky, Physics 361

EXAM 2, 2009-03-11 18:00-20:00
Instructions: The exam is closed book. Show your work as problems will be graded on both technique and final answer. Formulas:

$$
\left.\begin{array}{rlrl}
& E=\hbar \omega \quad \Delta E \Delta t \geq \hbar / 2 \quad & \hat{E}=i \hbar \partial / \partial t \\
& p=\hbar k \quad \Delta p \Delta x \geq \hbar / 2 \quad \hat{p}=-i \hbar \partial / \partial x
\end{array}\right] \begin{array}{ll}
\\
& \frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \Psi(x, t)+V(x) \Psi(x, t)=i \hbar \frac{\partial}{\partial t} \Psi(x, t) \\
& \frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x) \quad+V(x) \psi(x) \quad=E \psi(x) \\
\hbar c & =197 \mathrm{eV} \mathrm{~nm} \quad k_{e} e^{2}=e^{2} / 4 \pi \epsilon_{0}=1.44 \mathrm{eV} \mathrm{~nm} \\
m_{e} c^{2} & =0.511 \mathrm{MeV}, \quad m_{p} c^{2}=938 \mathrm{MeV} \\
\langle G\rangle & =\int_{-\infty}^{\infty} \psi^{*} \hat{G} \psi d x \quad E_{0}=m_{e} k_{e}^{2} e^{4} / 2 \hbar^{2}=13.6 \mathrm{eV} \\
\mu & =\frac{m M}{m+M}
\end{array}
$$

Part I-Short Answer

[2 pts] 1. How does the de Broglie wavelength appear in the Schrödinger equation?
[2 pts$] 2$. What is the effect of a force on a particle's wave function?
[4 pts] 3. Compare the i) time-independent and ii) time-dependent Schrödinger equations:
a) What information is needed to solve each?
b) What must be determined in the solution of each?
[5 pts] 4. a) Express $\psi=2+2 i$ in the form $r e^{i \theta}$.
b) Evaluate ψ^{*} in both forms.
c) Evaluate ψ^{2}.
d) Evaluate $|\psi|^{2}$.
[4 pts] 5. a) Write the formula for A in $\psi(x)=A x^{2} e^{-x / a}$. (Don't evaluate any integral!)
b) Write a formula for the expected value of the kinetic energy T of the particle.
[6 pts] 6. a) Draw the wave functions $\psi_{i}(x)$ of the following potential.
b) Graph the position vs. time of a classical particle with total energy E_{3}.
c) Describe the force represented by this potential.

[9 pts$]$ 7. For each of the following three wave functions, sketch the corresponding potential, using the x-axis as the energy level of this state. What is the value of n for each state (starting at $n=1$)?

[3 pts] 8. What is dispersion of waves and what causes it? Give a physical example.
[5 pts] 9. The phase velocity of surface waves is $\sqrt{k S / \rho}$ where S is the surface tension and ρ the density. What is the group velocity in terms of k, S, and ρ ?
[5 pts$] 10$. What is the decay lifetime of a particle with mass energy $m c^{2}=(1232 \pm 120) \mathrm{MeV}$?

Part II-Long Answer

[15 pts] 11. Show that $\psi_{1}(x)=x e^{-x / b}$ is a solution to the one-dimensional TISE with the potential $V(x)=-k_{e} e^{2} / x$ for $x>0$. Calculate the value of $b[\mathrm{~nm}]$, and the energy level $[\mathrm{eV}]$.
[10 pts] 12. Starting from the time-dependent Schrödinger equation, perform separation of variables to derive the time-independent Schrödinger equation, using $\Psi(x, t)=\psi(x) \cdot \phi(t)$. Obtain separate equations for $\psi(x)$ [TISE] and $\phi(t)$, and solve the equation for the time dependence $\phi(t)$.
[15 pts] 13. a) Show that $\psi(x)=A \sin \left(k_{n} x\right)$ is a solution of the time-independent Schrödinger equation (TISE) for an electron in an infinite square well, with $V(x)=0$ for $0<x<a_{0}$ and $V(x)=\infty$ for $x<0$ or $x>a_{0}$.
b) Show that the boundary conditions are satisfied on both sides of the well, and determine the values of k_{n} and therefore E_{n}.
c) Draw the energy levels and wave functions on a graph of the potential.
d) Derive the wavelength of the $n=2$ to $n=1$ transition.

