University of Kentucky, Physics 361
 Problem Set \#4, due Wednesday, Feb 24

1. [30 pts] Complex numbers, circular, and hyperbolic functions:
a) Use the power series of $e^{x}, \sin (\theta), \cos (\theta)$ to prove Euler's identity $e^{i \theta}=\cos \theta+i \sin \theta$.
b) Use Euler's identity to show if $z=x+i y$ where (x, y) are cartesian coordinates in the complex plane, then $z=r e^{i \theta}$ where (r, θ) are the polar coordinates of the same point.
c) The complex conjugate z^{*} is formed by replacing i with $-i$ everywhere in z. The modulus $|z| \equiv \sqrt{z^{*} z}$ is the complex analog of absolute value. Use $z=x+i y=r e^{i \theta}$ to show the relations $|z|^{2}=z^{*} z=z z^{*}=x^{2}+y^{2}=r^{2}$. Thus the modulus is the distance of z from the origin.
d) Expand z^{2} in terms of x, y and also r, θ to see why $|z|^{2}$ is more useful in general than z^{2}.
e) Multiply $e^{i \theta}$ by its complex conjugate and expand using Euler's identity to prove the relation $\sin ^{2} \theta+\cos ^{2} \theta=1$. This shows that $e^{i \theta}$ traces out a circle in the complex plane.
f) Use Euler's identity on $e^{i \theta}$ and $e^{-i \theta}$ to express $\cos \theta, \sin \theta$ and $\tan \theta$ in terms of $e^{i \theta}$ and $e^{-i \theta}$.
g) Using the similar definitions $\cosh (\alpha) \equiv \frac{1}{2}\left(e^{\alpha}+e^{-\alpha}\right)$ and $\sinh (\alpha) \equiv \frac{1}{2}\left(e^{\alpha}-e^{-\alpha}\right)$, derive the analog of Euler's identity for hyperbolic functions. Hint: i becomes \pm.
h) Multiply and expand e^{α} and $e^{-\alpha}$ in two ways to derive a simular formula as in part (e) for $\cosh (\alpha)$ and $\sinh (\alpha)$. This shows that $(\cosh (h), \sinh (\alpha))$ traces out a hyperbola in the plane.
i) Derive the addition formulas for $\cos (\alpha \pm \beta)$ and $\sin (\alpha \pm \beta)$ by multiplying and expanding $e^{i \alpha} \cdot e^{ \pm i \beta}$ and then separating the real and imaginary parts.
j) Obtain the derivates of $\sin \theta$ and $\cos \theta, \sinh \alpha$, and $\cosh \alpha$ using the derivative of $e^{i \theta}$ and $e^{ \pm \alpha}$.
2. [20 pts] Beats and group velocity
a) Show that two waves of equal frequency and amplitude travelling in opposite directions $A e^{i k x-i \omega t}$ and $A e^{-i k x-i \omega t}$ superimpose to form a standing wave. What is the resulting wavelength?
b) Using exponentials, show that two pure waves $e^{i(k x-\omega t)}$ of frequency $\left(\omega_{1}, k_{1}\right)$ and $\left(\omega_{2}, k_{2}\right)$, superimpose to form a beat pattern of $2 \cos (\Delta k x-\Delta \omega t) e^{i \bar{k} x-i \bar{\omega} t}$. Derive the formulas for the combined frequencies $(\Delta \omega, \Delta k)$ and $(\bar{\omega}, \bar{k})$. Identify the wave packet and the phase (carrier) wave, and solve the velocity of each. What beat frequency do you hear?
c) Interpret part a) as a specific case of part b).
d) In the limit that the two frequencies are very close together, show that the group velocity is $v_{g}=d \omega / d k$ for this case. The formula holds in general.
3. [25 pts] Wave packets. Experiment with the Java applet on the webpage:
http://phet.colorado.edu/simulations/sims.php?sim=Fourier_Making_Waves
a) Sketch the series of waves formed by adding each of the coefficents in succession:
$A_{1}=1.27, A_{3}=0.52, A_{5}=0.25, A_{7}=0.18, A_{9}=0.14, A_{11}=0.11$.
Why are all of the even terms 0 ?
b) Determine the coefficients needed to reproduce the following "inverted parabola" wave:

c) Solve a "Wave Game" puzzle of level 8 or higher, and attach the printed result (or email me a screendump).
d) In the "Discrete to Continuous" panel, explain what the three plots represent. Describe the variables $k_{1}, \lambda_{1}, k_{0}, \sigma_{k}$, and σ_{x}.
e) What is the effect of changing k_{1} on the resulting amplitude distribution and wave packet? What happens as k_{1} goes to zero?
f) Repeat for k_{0} and σ_{k}.
g) Explain what Heisenberg uncertainty principle has to do with the frequency components of a wave packet.

Also: Tipler Chapter 5: \#16, 25, 27, 37, 41.

