University of Kentucky, Physics 361 Problem Set \#6, due Mon, Mar 29

1. [15 pts] Different forms of the Laplacian. Show that the following operators (radial part of the Laplacian) are equal. Hint: put an arbitrary function $R(\rho)$ or $R(r)$ to the right of each term and apply the product rule for derivatives.
a) Cylindrical coordinates:

$$
\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho}=\frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho}=\frac{1}{\sqrt{\rho}} \frac{\partial^{2}}{\partial \rho^{2}} \sqrt{\rho}+\frac{1}{4 \rho^{2}}
$$

b) Spherical coordinates:

$$
\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}=\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}=\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r
$$

2. [30 pts] 2-d particle in an infinite circular well. Let $V(\rho)=0$ for $\rho<a$ and $V(\rho)=\infty$ for $\rho>a$ (free particle confined to a disk).
a) Write Schrödinger's equation for this particle in 2-d cylindrical coordinates.
b) Do a separation of variables $\psi(\rho, \phi)=R(\rho) \Phi(\phi)$ to obtain radial and azimuthal equations.
c) Show that $\Phi=e^{i m \phi}$ is a solution of the azimuthal equation. Using boundary conditions at $\phi=0=2 \pi$, show that $m=0, \pm 1, \pm 2, \ldots$.
d) Show that the radial equation is the Bessel equation of order m with the substitution $x=k \rho$, where $E=\hbar^{2} k^{2} / 2 m$. See http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html Equation (1). The solutions are called Bessel functions $J_{m}(k \rho)$ of order m.
e) Apply boundary condition $\psi(a)=0$ to determine the values of k for each m. For each value of m there is a series of radial modes $k_{m n}$ indexed by n (the number of nodes).
f) Show that the energy levels are $E_{n m}=\hbar^{2} x_{n m}^{2} / 2 m a^{2}$, where $x_{n m}$ is the n-th zero of $J_{m}(x)$. Using the values of x where the $J_{m}(x)=0$ (see http://mathworld.wolfram.com/BesselFunctionZeros.html), fill in the numerical value of each energy level in the following chart. Draw the node lines for each mode.
g) For an electron, what radius a would give a transition of $\lambda=121.5 \mathrm{~nm}$ from the first excited state to the ground state?

3. [20 pts] Show the following functions $Y_{l m}(\theta, \phi)$ are solutions of the differential equations:

$$
\begin{aligned}
\hat{L}_{z} Y_{l m} & \equiv-i \hbar \frac{\partial}{\partial \phi} Y_{l m} \quad=\hbar m Y_{l m} \quad \text { and } \\
\hat{L}^{2} Y_{l m} & \equiv\left(\frac{-\hbar^{2}}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta}\left(-\hbar^{2} \frac{\partial^{2}}{\partial \phi^{2}}\right)\right) Y_{l m}=\hbar^{2} l(l+1) Y_{l m}
\end{aligned}
$$

(In other words, they are eigenfunctions of \hat{L}^{2} and \hat{L}_{z}).
a) $Y_{00}=1$, b) $Y_{10}=\cos \theta$, c) $Y_{1 \pm 1}=\sin \theta e^{ \pm i \phi}$, d) $Y_{2 \pm 1}=\sin \theta \cos \theta e^{ \pm i \phi}$.

Show that the corresponding orbitals in rectangular coordinates are also solutions of $\nabla^{2} r^{l} Y_{l m}=0$ (where $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$):
a) $Y_{00}=1$ b) $r Y_{10}=z$, c) $r Y_{1 \pm 1}=x \pm i y$, d) $r^{2} Y_{2 \pm 1}=z(x \pm i y)$.

Note: the real and imaginary parts can each be used as separate solutions.

Also: Tipler Chapter 7: $\# 9,10,15,16$.

