University of Kentucky, Physics 361 Problem Set #6, due Mon, Mar 29

1. [15 pts] Different forms of the Laplacian. Show that the following operators (radial part of the Laplacian) are equal. Hint: put an arbitrary function $R(\rho)$ or R(r) to the right of each term and apply the product rule for derivatives.

a) Cylindrical coordinates:

$$\frac{\partial^2}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial}{\partial \rho} = \frac{1}{\rho} \frac{\partial}{\partial \rho} \rho \frac{\partial}{\partial \rho} = \frac{1}{\sqrt{\rho}} \frac{\partial^2}{\partial \rho^2} \sqrt{\rho} + \frac{1}{4\rho^2}$$

b) Spherical coordinates:

$$\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} = \frac{1}{r} \frac{\partial^2}{\partial r^2} r$$

2. [30 pts] 2-d particle in an infinite circular well. Let $V(\rho) = 0$ for $\rho < a$ and $V(\rho) = \infty$ for $\rho > a$ (free particle confined to a disk).

a) Write Schrödinger's equation for this particle in 2-d cylindrical coordinates.

b) Do a separation of variables $\psi(\rho, \phi) = R(\rho)\Phi(\phi)$ to obtain radial and azimuthal equations.

c) Show that $\Phi = e^{im\phi}$ is a solution of the azimuthal equation. Using boundary conditions at $\phi = 0 = 2\pi$, show that $m = 0, \pm 1, \pm 2, \ldots$

d) Show that the radial equation is the Bessel equation of order m with the substitution $x = k\rho$, where $E = \hbar^2 k^2 / 2m$. See http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html Equation (1). The solutions are called Bessel functions $J_m(k\rho)$ of order m.

e) Apply boundary condition $\psi(a) = 0$ to determine the values of k for each m. For each value of m there is a series of radial modes k_{mn} indexed by n (the number of nodes).

f) Show that the energy levels are $E_{nm} = \hbar^2 x_{nm}^2 / 2ma^2$, where x_{nm} is the *n*-th zero of $J_m(x)$. Using the values of *x* where the $J_m(x) = 0$ (see http://mathworld.wolfram.com/BesselFunctionZeros.html), fill in the numerical value of each energy level in the following chart. Draw the node lines for each mode.

g) For an electron, what radius a would give a transition of $\lambda = 121.5$ nm from the first excited state to the ground state?

3. [20 pts] Show the following functions $Y_{lm}(\theta, \phi)$ are solutions of the differential equations:

$$\hat{L}_{z}Y_{lm} \equiv -i\hbar\frac{\partial}{\partial\phi}Y_{lm} = \hbar mY_{lm} \text{ and}$$
$$\hat{L}^{2}Y_{lm} \equiv \left(\frac{-\hbar^{2}}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + \frac{1}{\sin^{2}\theta}\left(-\hbar^{2}\frac{\partial^{2}}{\partial\phi^{2}}\right)\right)Y_{lm} = \hbar^{2}l(l+1)Y_{lm}$$

(In other words, they are eigenfunctions of \hat{L}^2 and \hat{L}_z).

a) $Y_{00} = 1$, b) $Y_{10} = \cos \theta$, c) $Y_{1\pm 1} = \sin \theta e^{\pm i\phi}$, d) $Y_{2\pm 1} = \sin \theta \cos \theta e^{\pm i\phi}$.

Show that the corresponding orbitals in rectangular coordinates are also solutions of $\nabla^2 r^l Y_{lm} = 0$ (where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$):

a) $Y_{00} = 1$ b) $rY_{10} = z$, c) $rY_{1\pm 1} = x \pm iy$, d) $r^2Y_{2\pm 1} = z(x \pm iy)$.

Note: the real and imaginary parts can each be used as separate solutions.

Also: Tipler Chapter 7: #9, 10, 15, 16.