
Wayne Witzke ProblemSet #1 PHY 361

Problem 1

The normal distribution (Gaussian distribution
or bell curve) has the form

f(x) = Ce
− 1

2

(
(x−µ)
σ

)2
Part a

Calculate the normalization factor C by re-
quiring the distribution to be normalized

ˆ ∞
x=−∞

f(x) dx = 1

Substituting in f(x), defined above, this becomes:

ˆ ∞
−∞

Ce
− 1

2

(
(x−µ)
σ

)2
dx = 1

If we set b = x−µ
σ , and thus db = dx

σ , then we can
substitute x = bσ+µ and dx = σ db into the equation.
It becomes:

ˆ ∞
−∞

Ce−
1
2 b

2
σ db = 1

Using In =
´∞
0
xne−λx

2
dx with n = 0. Accord-

ing to [Tipler & Llewellyn, p AP 16-17], in this case
I0 = 1

2π
1/2λ−1/2. Since e−λx

2
is an even function, in-

tegrating from −∞ to ∞ gives 2I0 = π1/2λ−1/2. In
our case, λ = − 1

2 . So we have:

1 =
ˆ ∞
−∞

Ce−
1
2 b

2
σ db

= σC

ˆ ∞
−∞

e−
1
2 b

2
db

= σCπ1/2

(
1
2

)
−1/2

1 = Cσ
√

2π

So, C = 1
σ
√

2π
.

Part b

Calculate 〈x〉, the expected value of x, defined
by

〈u〉 =

´∞
−∞ uf(x) dx´∞
−∞ f(x) dx

What physical interpretation does it have?

Since
´∞
−∞ f(x) dx = 1, as defined in Part a, and sub-

stituting in x for u, we get:

〈x〉 =
ˆ ∞
−∞

xf(x) dx

Substituting in for f(x), we get:

〈x〉 =
ˆ ∞
−∞

xCe
− 1

2

(
(x−µ)
σ

)2
dx

Once again, if we set b = x−µ
σ , and thus db = dx

σ , then
we can substitute x = bσ + µ and dx = σ db into the
equation. It becomes:

〈x〉 =
ˆ ∞
−∞

C(bσ + µ)e−
1
2 b

2
σ db

=
ˆ ∞
−∞

Cbσ2e−
1
2 b

2
db+

ˆ ∞
−∞

Cσµe−
1
2 b

2
db

= Cσ2

ˆ ∞
−∞

be−
1
2 b

2
db+ µ

ˆ ∞
−∞

Ce−
1
2 b

2
σ db

From Part a, we know that
´∞
−∞ Ce−

1
2 b

2
σ db = 1.

[Tipler & Llewellyn, p AP 16-17] also tell us many
wonderful things about how to integrate

´∞
0
xe−λx

2
dx,

however, we are integrating from−∞ to∞, and xe−λx2

is an odd function, so the first integral is zero. So we
get:

〈x〉 = µ

This represents the mean of the distribution.
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Part c

Calculate
〈
x2
〉
. Why is this different than

〈x〉2? Express σ in terms of 〈x〉 and
〈
x2
〉
.

What physical interpretation does it have?
Show that〈

(x− 〈x〉)2
〉

=
〈
x2
〉
− 〈x〉2

We know 〈x〉 = µ, so we need to calculate
〈
x2
〉
. Sub-

stituting in u = x2 into the equation in Part b, we get

〈
x2
〉

=

´∞
−∞ x2f(x) dx´∞
−∞ f(x) dx

Once again,
´∞
−∞ f(x) dx = 1, so we have:

〈
x2
〉

=
ˆ ∞
−∞

x2f(x) dx

=
ˆ ∞
−∞

x2Ce
− 1

2

(
(x−µ)
σ

)2
dx

= C

ˆ ∞
−∞

x2e
− 1

2

(
(x−µ)
σ

)2
dx

And yet again, if we set b = x−µ
σ , and thus db = dx

σ ,
then we can substitute x = bσ + µ and dx = σ db into
the equation. It becomes:

〈
x2
〉

= C

ˆ ∞
−∞

(bσ + µ)2e−
1
2 b

2
σ db

= C

ˆ ∞
−∞

(b2σ3 + 2bσ2µ+ µ2σ)e−
1
2 b

2
db

= Cσ3

ˆ ∞
−∞

b2e−
1
2 b

2
db

+2Cσ2µ

ˆ ∞
−∞

be−
1
2 b

2
db

+µ2

ˆ ∞
−∞

Ce−
1
2 b

2
σ db

Similar to Part b, the integral in the third term is equal
to one, leaving the third term as µ2. The integral in the
second term is for an odd function from −∞ to∞, so it
is equal to zero. The integral in the first term, however,
resembles I2 from [Tipler & Llewellyn, p AP 16-17],
except that we are integrating from −∞ to ∞, instead
of from 0 to∞. This gives us2I2 = 1

2π
1/2λ−3/2, which

gives:

Cσ3

ˆ ∞
−∞

b2e−
1
2 b

2
db =

Cσ3
√
π

2
(

1
2

)3/2
But, C = 1

σ
√

2π
, and substituting this in we get:

Cσ3
√
π(

1
2

)1/2 =
(

1
σ
√

2π

)
σ3
√

2π = σ2

So,
〈
x2
〉

= σ2 + µ2.

To find σ in terms of 〈x〉 and
〈
x2
〉
, we can substitute

µ = 〈x〉 into
〈
x2
〉

= σ2 + µ2, and we get:

〈
x2
〉

= σ2 + 〈x〉2

σ2 =
〈
x2
〉
− 〈x〉2

σ =
√
〈x2〉 − 〈x〉2

This gives us the population standard deviation of the
distribution.〈
x2
〉
is also x2

RMS , which is x2
1+x

2
2+···+x

2
N

N . 〈x〉2, on
the other hand, is

(
x1+x2+···+xN

N

)2, which not only has
multiple cross terms of xi in the numerator, but also has
N2 in the denominator. So, 〈x〉2 is clearly not equal to〈
x2
〉
.

To determine if〈
(x− 〈x〉)2

〉
=
〈
x2
〉
− 〈x〉2

we check to see what each side equals. From previous
calculations, we have:
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〈
x2
〉
− 〈x〉2 = σ2 + µ2 − µ2 = σ2

and, by the definition of 〈u〉 given above:

〈
(x− 〈x〉)2

〉
=
ˆ ∞
−∞

(x− 〈x〉)2 f(x) dx

=
ˆ ∞
−∞

(x− µ)2 f(x) dx

=
ˆ ∞
−∞

(
x2 − 2xµ+ µ2

)
f(x) dx

=
ˆ ∞
−∞

x2f(x) dx

−
ˆ ∞
−∞

2xµf(x) dx

+
ˆ ∞
−∞

µ2f(x) dx

=
ˆ ∞
−∞

x2Ce
− 1

2

(
(x−µ)
σ

)2
dx

−2µ
ˆ ∞
−∞

xCe
− 1

2

(
(x−µ)
σ

)2
dx

+µ2

ˆ ∞
−∞

Ce
− 1

2

(
(x−µ)
σ

)2
dx

However, we have already calculated all three of these
integrals. From earlier in this problem, we found that´∞
−∞ x2Ce

− 1
2

(
(x−µ)
σ

)2
dx = σ2 + µ2, from part (b) we

know that
´∞
−∞ xCe

− 1
2

(
(x−µ)
σ

)2
dx = µ, and, by defi-

nition, we know that
´∞
−∞ Ce

− 1
2

(
(x−µ)
σ

)2
dx = 1. So,

we’re left with:

〈
(x− 〈x〉)2

〉
= σ2 + µ2 − 2µ(µ) + µ2(1)

= σ2

Since both sides of the equation are equal to σ2,〈
(x− 〈x〉)2

〉
=
〈
x2
〉
− 〈x〉2. Note that it is also pos-

sible to use the properties associated with averaging to
solve this problem:

〈
(x− 〈x〉)2

〉
=

〈
x2 − 2x 〈x〉+ 〈x〉2

〉
=

〈
x2
〉
− 〈2x 〈x〉〉+

〈
〈x〉2

〉
From earlier, we know that

〈
x2
〉

= σ2 + µ2 and that
〈x〉 = µ, so we have:

〈
(x− 〈x〉)2

〉
= σ2 + µ2 − 〈2xµ〉+

〈
µ2
〉

But, 2µ and µ2 are constants, and can be pulled out of
the averages:

〈
(x− 〈x〉)2

〉
= σ2 + µ2 − 2µ 〈x〉+ µ2 〈1〉

= σ2 + µ2 − 2µ2 + µ2

= σ2

Part d

Given µ = 3 and σ = 2, calculate the proba-
bility that x < 0. Note: there is no analytic
formula for the result, so you will have to cal-
culate the integral numerically or look it up in
a table.

We can calculate z = |x−µ|
σ = |0−3|

2 = 1.5 when x = 0.
The probability of getting a value of x between µ−zσ =
3−3 = 0 and µ+zσ = 3+3 = 6 is 0.86638, according
to Table C.2 in [Bevington & Robinson, p251]. Thus,
the chance of getting a value of x outside this range is
1 − 0.86638 = 0.13362, and the probability of getting
values only below zero should be half this probability
(since it represents half of the remaining distribution),
or 0.13362/2 = 0.06681.

Problem 2

Calculate vRMS ≡
√
〈v2〉 for H2 molecules at

T = 300K. Using potential energy, show that
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the escape velocity of the earth’s graitational
field is vescape =

√
2GM/R. Compare this

vallue with vRMS . The earth’s atmosphere
contains very little H2. How is it possible that
the H2 the molecules escape with a relatively
small vRMS? Why doesn’t N2 escape? [Tipler
& Llewellyn, p8]

We know that vRMS =
√

3kT
m , where T is the tem-

perature, m is the mass of the particle, and k =
1.381× 10−23J/K. Substituting, we have:

vRMS =

√
3 (1.381× 10−23J/K) (300 K)

3.34× 10−27kg

≈ 1929 m/s

The escape velocity is the velocity at which some ob-
ject has sufficient kenetic energy to overcome the gra-
vational attraction of some other object. That is, at
infinite distance, the speed of an object initial traveling
at escape velocity will be essentially zero, but the es-
caping object will be able to reach this distance, having
overcome the gravational pull of the reference object.
So, T − U = 0. If T = 1

2mv
2
e , where ve is the escape

velocity and m is the mass of the escaping object, and
U = GMm

r , where G = 6.673×10−11 m3

kg·s2 is the gravi-

tional constant, M is the mass of the reference object,
m is the mass of the escaping object, and r is the initial
distance between the center of the reference object and
the escaping object, then we can easily calculate ve:

T − U = 0
1
2
mv2

e −
GMm

r
= 0

1
2
mv2

e =
GMm

r

v2
e =

2GM
r

ve =

√
2GM
r

If one of these objects is the earth, with mass M =
5.9742 × 1024kg [Google] and radius r = 6378.1 km
[also Google], then the escape velocity for the earth is:

ve =

√
2GM
r

=

√√√√2
(
6.673× 10−11 m3

kg·s2
)

(5.9742× 1024kg)

6378.1× 103 m
≈ 11, 181m/s

This escape velocity is much larger than the vRMS

of H2. However, it is still possible for the hydrogen
molecules to escape because the speed of hydrogen
molecules in the atmosphere follows Maxwellian distri-
bution and is not, in fact, a homogenous medium of
hydrogen molecules all traveling at a speed of vRMS .
Some molecules in this distribution will have enough ki-
netic energy to overcome Earth’s gravity. Nitrogen will
also follow a Maxwellian distribution, but the vRMS of
N2 molecules at 300 K is:

vRMS =

√
3 (1.381× 10−23J/K) (300 K)

4.68× 10−26kg

≈ 515 m/s

This is significantly smaller than the vRMS of hydro-
gen molecules. While it is still possible for individual
N2 molecules to escape Earth’s atmosphere, the num-
ber of nitrogen molecules that are capable of attaining
the requisite escape velocity must be significantly lower
than for hydrogen molecules. According to [Tipler &
Llewellyn, p323], a gas will escape from a planet’s atmo-
sphere in 108 years if the average speed of its molecules
is one-sixth of the escape velocity. The average veloc-
ity of nitrogen molecules is, also according to [Tipler
& Llewellyn, p321], about 475 m/s. This is roughly
1/24th the escape velocity for Earth. I do not know if
the 108 figure would scale up naïvely, so that the time
required would be, say, 108∗4 = 1024 years, but if this
is the case, then the earth would have to be 1013 bil-
lion years old in order for N2 gas to completely escape
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and, according to Wikipedia, the age of the earth is
only about 4.5 billion years old. Even if the 108 fig-
ure scaled up as 108+4 = 1012, this is still 100 billion
years. Earth still is not nearly old enough for all the
nitrogen molecules to have all escaped. Also, it may
be that gasses of molecules with an average velocity of
less than 1/6th Earth’s escape velocity will never able
to entirely escape Earth’s gravational field. The book
was not entirely clear on this.

Problem 3

Compare vRMS and the average kinetic en-
ergy per atom/molecule for H2, He, O2, and
N2 gas under standard temperature and pres-
sure.

We already know from Problem 2 that the vRMS of H2

is about 1929 m/s, and for N2 is about 515 m/s. For
O2 and He, we first have to calculate the mass of the
individual molecules in units that are actually usable.
This is done by dividing the molar/atomic mass by
NA = 6.022× 1023, Avagadro’s number:

mHe ≈
(

4.0026 g/mole
6.022× 1023particles/mole

)(
1 kg

1000 g

)
≈ 6.647× 10−27kg

mO2
≈

(
32 g/mole

6.022× 1023particles/mole

)(
1 kg

1000 g

)
≈ 5.314× 10−26kg

Now we can calculate vRMS for helium atoms and oxy-
gen molecules exactly as was done for nitrogen and hy-
drogen molecules:

vRMSHe ≈

√
3 (1.381× 10−23J/K) (300 K)

6.647× 10−27kg

≈ 1367 m/s

vRMSO2
≈

√
3 (1.381× 10−23J/K) (300 K)

5.314× 10−26kg

≈ 484 m/s

The average kinetic energy, then, of each of these gasses
is just 〈E〉 =

〈
1
2mv

2
〉

= 1
2m
〈
v2
〉

= 1
2mv

2
RMS . So we

have:

〈
EH2

〉
≈ 1

2
(
3.34× 10−27kg

)
(1929 m/s)2

≈ 6.21× 10−21J〈
EN2

〉
≈ 1

2
(
4.68× 10−26kg

)
(515 m/s)2

≈ 6.21× 10−21J〈
EHe

〉
≈ 1

2
(
6.647× 10−27kg

)
(1367 m/s)2

≈ 6.21× 10−21J〈
EO2

〉
≈ 1

2
(
5.314× 10−27kg

)
(484m/s)2

≈ 6.22× 10−21J

So, while the various vRMS values are significantly dif-
ferent, the kinetic energies for each molecule at stan-
dard temperature and pressure are basically identical.
This stands to reason, since, according to [Tipler &
Llewellyn, p324], the average energy of a molecule is
independent of mass. This could have been calculated
for each atom/molecule by using the formula:

〈E〉 =
3
2
kT

≈ 3
2
(1.38× 10−23)(300)

≈ 6.21× 10−21J

Problem 4

Show that the following blackbody distribu-
tions written in terms of wavelength or fre-
quency are equivalent:
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ũ(f) df =
8πf2

c3
hf

e
hf
kT − 1

|df |

u(λ) dλ =
8πhc
λ5

1

e
hc
λkT − 1

|dλ|

Since c = λf , we can substitute in for f=cλ−1 in the
first equation to derive the second equation. We also
need to substitute df = −cλ−2dλ.

ũ(f) df =
8πf2

c3
hf

e
hf
kT − 1

|df |

=
8π
(
cλ−1

)2
c3

hcλ−1

e
hcλ−1
kT − 1

∣∣−cλ−2dλ
∣∣

=
8πc2

λ2c3
hc

λe
hcλ−1
kT − 1

c

λ2
|dλ|

=
8π
λ5

h

e
hc
λkT − 1

c |dλ|

=
8πhc
λ5

1

e
hc
λkT − 1

|dλ|

Since this is the same as the right hand side of the sec-
ond equation, we can conclude that ũ(f) df = u(λ) dλ.

Problem 5

Integrate Plank’s law over all wavelengths to
derive Steffan’s law: that the total power ra-
diated by a black body is

R = σT 4

where

σ =
2π5k4

15h3c2

using
ˆ ∞

0

x3 dx

ex − 1
=
π4

15

Plank’s law can be written in two ways. The first is:

u(λ) =
8πhcλ−5

ehc/λkT − 1

The above form is a spectral energy density, which has
units of energy per unit volume per unit frequency. An-
other way to write Plank’s law is:

I(λ) =
2πhc2λ−5

ehc/λkT − 1

This has units of power per unit area per solid angle
(whatever that means) per unit frequency. Since R is
a power per unit area, the I(λ) is the form of Plank’s
law that we want to use. If we use u(λ), the resulting
equation will be different by a factor of 4

c .

We can integrate this, using x = hc
λkT , dx = − hc

λ2kT dλ,
λ = hc

xkT , and
dλ
λ2 = −kThc dx:

ˆ ∞
0

u(λ) dλ =
ˆ ∞

0

2πhc2λ−5

ehc/λkT − 1
dλ

=
ˆ ∞

0

2πhc2λ−3

ehc/λkT − 1

(
dλ

λ2

)
=
ˆ 0

∞

2πhc2
(
hc
xkT

)−3

ex − 1

(
−kT
hc
dx

)
= −

ˆ ∞
0

2πhc2k3T 3x3

h3c3ex − 1

(
−kT
hc
dx

)
=
ˆ ∞

0

2πk4T 4x3

h3c2ex − 1
dx

=
2πk4T 4

h3c2

ˆ ∞
0

x3

ex − 1
dx

=
2πk4T 4

h3c2
π4

15

=
2π5k4T 4

15h3c2

=
(

2π5k4

15h3c2

)
T 4

= σT 4
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Problem 6

Set the derivative of Plank’s law equal to zero
to show Wien’s displacement law: that

λmT = const = 2.989× 10−3m · K

where λm is the wavelength of maximum in-
tensity radiation from a blackbody. The Sun’s
surface temperature is 5800 K. Calculate λm.
What color is the sun?

Plank’s law is:

u(λ) =
8πhcλ−5

ehc/λkT − 1

Differentiating, we get:

du

dλ
= 8πhc

(
− 5λ−6

ehc/λkT − 1

)
+8πhc

(
− λ−5(

ehc/λkT − 1
)2 ehc/λkT (− hc

λ2kT

))

= 8πhc

(
− 5λ−6

ehc/λkT − 1
+

hcehc/λkT

λ7kT
(
ehc/λkT − 1

)2
)

Setting this equal to zero, we get:

0 = 8πhc

(
− 5λ−6

ehc/λkT − 1
+

hcehc/λkT

λ7kT
(
ehc/λkT − 1

)2
)

0 = − 5λ−6

ehc/λkT − 1
+

hcehc/λkT

λ7kT
(
ehc/λkT − 1

)2
0 =

1
λ6
(
ehc/λkT − 1

) (−5 +
hcehc/λkT

λkT
(
ehc/λkT − 1

))

0 = −5 +
hcehc/λkT

λkT
(
ehc/λkT − 1

)
Now we can substitute x = hc

λkT into the equation, to
get:

0 =
xex

ex − 1
− 5

This (Wikipedia) “cannot be solved in terms of elemen-
tary functions. It can be solved in terms of Lambert’s
Product Log function but an exact solution is not im-
portant in this derivation.” However, we can estimate
x fairly easily. First, let’s rearrange the function so that
it reads:

5 (ex − 1) = xex

x = 5
(
1− e−x

)
Now we can let e−x = 0, and estimate x ≈ 5. Sub-
stituting that back into the right side of the equa-
tion, we have x ≈ 5

(
1− e−5

)
≈ 4.96631027. Sub-

stituting this value back into the equation, we get
x ≈ 5

(
1− e−4.96631027

)
≈ 4.96515593. Substitut-

ing that back into the equation one last time, we get
x ≈ 5

(
1− e−4.96515593

)
≈ 4.96511569. Between the

last two iterations, the value of x changed by less than
0.00005. This is a reasonable approximation. So, we
can say that x ≈ 4.965

Now if we substitute this back into x = hc
λkT , we get,

with a little shuffling around:

λT =
hc

kx

≈

(
6.63× 10−34m2kg

s
) (

3.00× 108m
s
)(

1.381× 10−23 kg·m2

s2K

)
(4.965)

≈ 2.90× 10−3m · K

Approximation errors aside, this agrees well with the the
problem statement. The color of the sun, if it is at 5800
K, is

λ ≈ 2.989× 10−3

5800
≈ 515 nm

This makes the sun’s color of highest contribu-
tion green, close to blue. However, the sun’s
color is still white. For details, please see
http://en.wikipedia.org/wiki/Planckian_locus
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