
Wayne Witzke ProblemSet #3 PHY 361

Problem 1

In 1866 when atoms and molecules were still quite hypothetical, Joseph Loschmidt used kinetic energy theory
to get the first reasonable estimate of molecular size. He used the liquid to gas expansion ratio of air
ε = ng/nl (where n = N/V ) together with the mean free path λ between collisions to calculate the average
diameter s of air molecules. In the following diagram, σ is the cross sectional area of interaction between two
air molecules (cross section). The purpose of this problem is to reproduce his results and show the profound
consequences in atomic physics.
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Figure 1: Volume of Interaction for Air Molecules

Part a

Justify that the number density of air [molecules/cm3] is ng = 1/λσ.

Since σ is the cross-section of interaction, that is, the radius of σ gives the maximum distance from the probe that the
center of an air molecule can be and still interact with the probe, and λ is the average distance that the probe can travel
without encountering an air molecule, λσ defines a volume in which only one air molecule, on average, exists. Since
there is only one molecule in this volume, the number density can be expressed as one molecule per unit volume, or

ng =
1 air molecule

λσ

Part b

Justify that σ = πs2, not, for example, π (s/2)2.

We use s here, the diameter of the probe, instead of, say, s/2 (the radius) because we want the total area of interaction.
Since both the probe and the air molecule occupy a volume, we cannot conclude that the cross sectional area of the probe
is sufficient. Instead, we need to consider that the very outter shell of both the probe and the air molecule can interact.
So, the area of interaction must have a radius that is equal to the maximum distance between the centers of the probe
and the molecule when the two are still interacting. Since both the probe and the air molecules can be considered to be
spheres, the distance from the center of the probe or air molecule to its outter shell is equal to the radius of the probe
or air molecule, and the total maximum distance between the probe and the air molecule is, then, equal to the sum of
the radii of the probe and the air molecule. If we assume that the probe and the air molecule are about the same size,
with diameter s, this becomes 2(s/2), or just s.
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Part c

Show that ε = s/6λ, assuming that the molecules are tightly packed in a liquid. (Extra credit) Explain why
Loschmidt used ε = s/8λ.

Since ε = ng/nl, and each n = N/V , we can estimate the condensation coefficient by using ng = 1/λσ (the molecule
number density of an individual molecule in a gas from part (a)) and nl = 1

4
3π(s/2)3

, which is the molecule number density
of any individual spherical gas molecule in a liquid. This gives:

ε =
1
λσ
1

4
3π(s/2)3

=
4
3π

s3

8

λπs2

=
1
3s

1
2

λ

ε =
s

6λ

Instead of ε = s/6λ, Loschmidt used ε = s/8λ. Examining “On the Size of the Air Molecules” by Loschmidt
[http://www.chemteam.info/ Chem-History/Loschmidt-1865.html] and “On the Dynamical Theory of Gases” by Clausius
[http://books.google.com/books?id=6ebK5yP1q1IC&pg=PA434&lpg=PA434&dq=Clausius+%22On+the+dynamical+
theory+of+gases%22&source=bl&ots=-n-YD_SQpR&sig=db3QujaX9AXYqNQ9POyEwQEpmpY&hl=en&ei=f7ZrS7fx
I43V8AbM4uiPBg&sa=X&oi=book_result&ct=result&resnum=4&ved=0CBgQ6AEwAw#v=onepage&q=Clausius%20
%22On%20the%20dynamical%20theory%20of%20gases%22&f=false], the reason for this disparity obviously arises be-
cause Loschmidt and Clausius did not assume that the air molecules in a sample would be stationary, and that they would
be moving at the same velocity as the probe. Clausius asserted that this increases the number of collisions by a factor
of 4

3 . In “On the Dynamical Theory of Gasses”, Clausius attempted to prove this assertion.

As a starting point, he the same simplifying assumption that we made, that the probe was in motion but the other air
molecules were not. This led to the same conclusion that we reached, that is, that:

1
ng

= λπs2

Actually, he was more interested in the number of collisions in a given time:

Ns = vπs2N

Where Ns is the number of collisions for this stationary system, v is the “absolute” velocity of the probe, N is the
number of stationary molecules in the unit space, and s is, as before, the maximum distance between the centers of
two interacting molecules. Next, he removes the simplifying assumption, so that all molecules can have motion, and he
replaces v with the relative velocity between the probe and the mean of the velocities of the other air molecules, r. Not
surprisingly, this changes the number of collisions to:

Nd = rπs2N

The ratio, then, is Ns/Nd = v/r. Clausius notes here that Maxwell arrived at the same conclusion independently.
However, they apparently differed on the determination of the mean value, r. Quoting the letter directly (or almost. . .φ
has been used in place of another character in a different script):

Let u be the velocity of any molecule m, and φ the angle between the direction of its motion and that of the
molecule µ; the relative velocity between µ and m will then be√

u2 + v2 − 2uv cosφ

When the molecules, m, m1, m2 . . . all move with the same velocity, in other words, when u is constant and
φ alone variable from one molecule to another, the mean value can be easily calculated.

Page 2



Wayne Witzke ProblemSet #3 PHY 361

Maxwell apparently believed that, in this case, r =
√
u2 + v2 = v

√
2. However, Clausius disagrees:

Since all directions are equally probable for the molecules m, m1, m2 . . ., the number of those whose lines of
motions make angles between φ and φ+dφ with the line in which µ moves will have to the whole number of
molecules the same ratio that a spherical zone with the polar angle φ and the breadth dφ has to the whole
surface of the sphere, in other words, the ratio

2π sinφdφ : 4π

The number of such molecules in the unit of volume is consequently

N · 1
2

sinφdφ

In order to obtain the required mean value r, the last expression must be multiplied by the relative velocity
which corresponds to it, the product integrated between the limits 0 and π, and the integral divided by N.
Hence

r =
1
2

ˆ π

o

√
u2 + v2 − 2uv cosφ · sinφdφ

This gives at once

r =
1

6uv

[(
u2 + v2 + 2uv

) 3
2 −

(
u2 + v2 − 2uv

) 3
2
]

whence we may deduce

r = v +
1
3
u2

v
, whenu < v

and

r = u+
1
3
v2

u
, whenu > v

When u = v, both results coincide in value with

r =
4
3
v

and thus verify my assertion.

This changes the estimate of ng, which, through Clausius’ work, becomes:

ng =
3

4πλs2
=

3
4λσ

Using nl = 6
πs3 , we can show that:

ε =
ng
nl

=
3

4λσ
6
πs3

=
(

3
4λπs2

)(
πs3

6

)
=

(
1

4λ

)(s
2

)
=

s

8λ

This is why Loschmidt used ε = s/8λ.
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Part d

Given the density of liquid air ρl = 0.870 g/cm3, the molar volume of an ideal gas Vm = 24 L/mol, and the
atomic weight of air A = 35.6 g/mol, calculate the expansion ratio ε from liquid to air at STP (1 atm, 20◦C.)
Loschmidt had to estimate ρl, since air had not been liquefied by 1866.

Here, we need to find ε = ng/nl. To determine this ratio, it is important to calculate ng and nl in the same units. ng
can be found easily by:

ng =
NA
Vm

To find nl:

nl =
ρlNA
A

For ε this gives us:

ε =
ng
nl

=
NA
Vm
ρlNA
A

=
A

Vmρl

=
35.6 g/mol

(0.870 g/cm3) (24 L/mol) (1000 cm3/L)
= 0.00170

This is on the same order as the condensation coefficients calculated by Loschmidt for various gasses, though it is quite
a bit larger than his calculated condensation coefficient for air itself, which was 0.000866.

Part e

Maxwell determined λ = 62 nm from viscosity measurements of air. A later extraction λ = 140 nm by Oskar
Emil Meyer (don’t laugh!) was less accurate. Use this to calculate s and σ.

Using our equation for ε = s/6λ, we can easily determine s. σ can then be determined using σ = πs2. For λ = 62 nm:

s = 6λε
= 6 (62 nm) (0.00170)
= 0.6324 nm

And:

σ = π (0.6324)2

= 1.26 nm2

For λ = 140 nm:

s = 6λε
= 6 (140 nm) (0.00170)
= 1.428 nm

And:

σ = π (1.428)2

= 6.406 nm2
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Part f

Using σ, calculate the density of air ng
[
cm−3

]
at STP (the Loschmidt number or 1 Amagat).

Using σ for λ = 62 nm from part (e), we have:

ng =
1
σλ

=
1

(1.26 nm2) (62 nm)
= 1.28× 1019cm−3

Part g

Using ng and Vm calculate Avogadro’s number NA (also called the Loschmidt number).

Given Vm = 24 L/mol and ng = 1.28× 1019cm−3, we have:

NA = Vmng

=
(

24 L
mol

)(
1.28× 1019molecules

cm3

)
= 3.072× 1023molecules/mol

Amazingly, this is on the same order of magnitude as the actual Avogadro’s number, 6.022× 1023molecules/mol.

Part h

Faraday’s constant F = NAe = 96485C/mol was determined by weighing the amount of silver deposited
during electrolysis of silver ions. Use this to calculate the elementary charge e.

Easily, we have:

e =
F

NA

=
96485C/mol

3.072× 1023molecules/mol
= 3.141× 10−19C/molecule

Once again, very close to the actual value, 1.602× 10−19C.

Part i

Using the cathode ray tube, Thompson discovered electrons, negatively charged particles with charge-to-mass
ratio e/m = 1.75× 108C/g. Calculate the mass of an electron.

Here, we have;

m =
e

1.75× 108C/g

=
3.141× 10−19C
1.75× 108C/g

= 1.795× 10−27g
= 1.795× 10−30kg

Again, very close to the actual mass of an electron, 9.109× 10−31kg.
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Part j

Using the atomic weight A = 1.008 g/mol of hydrogen, calculate the mass of a proton.

Since a hydrogen atom is made up of one proton and one electron, the mass of the proton is:

mp = ma −me

=
1.008 g/mol

3.072× 1023molecules/mol
−1.795× 10−27g

= 3.279× 10−24g

Of course, subtracting the electron makes very little difference, since it is so much smaller than the mass of the proton.

Problem 2

Consider the scattering of hard spheres as discussed in class. It is assumed the target is infinitely massive
so it does not recoil, and the probe scatters by reflection, i.e. the angle of reflection equals the angle of
incidence. The radius of the probe and target are a and A respectively.

Part a

Determine the relation between the impact parameter b and the scattering angle θ.

Since we’re scattering hard spheres here, we can assume that the two spheres will never “intersect”. Also, the problem
definition states that the scattering will be through reflection, which completely defines the behavior of the two interacting
objects.

At the point at which the probe impacts the target, the probe will reflect off the target at some angle φ that equals the
angle of incidence. This angle is defined with respect to a line through both the radius of the target and the point of
impact.

The impact parameter for an individual event, b, can now be defined in terms of the distance of the center of the probe
from the center of the cross section as the sum of the portion of the radii of the probe and target that are in the radial
direction of the cross section, or b = A sin (φ) + a sin (φ), which leaves us with:

b = (A+ a) sinφ

However, we ultimately want to know b in terms of θ, the scattering angle, not φ. Fortunately, since we know that the
probe reflects off the target, we know that the angle that the reflected ray makes with the angle of incidence is equal
to the angle that the impact ray makes with the angle of incidence, and then the impact parameter θ = 180− 2φ. So,
φ = 180−θ

2 . This gives us

b = (A+ a) sin
(

180− θ
2

)
= (A+ a) sin

(
90− θ

2

)
= (A+ a) cos

(
θ

2

)

This gives the correct result at θ = 0◦ as b = A+ a, which is the expected maximum impact parameter, and gives b = 0
when θ = 180◦, which is once again correct, since a head-on collision should result in a rebound of the probe.
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Figure 2: Hard Interaction between Spheres

Part b

Using part (a), calculate the cross section dσ/dΩ. Plot it as a function of θ.

To calculate dσ
dΩ , we can first find dσ and dΩ separately. Since σ = πb2, dσ = 2πb db. Ω is defined to be the solid angle,

or Ω = 2π (1− cos θ). So, dΩ = 2π sin θ dθ. This θ is the same scattering angle as in part (a). This gives us:

dσ

dΩ
=

2πb db
2π sin θ dθ

=
b db

sin θ dθ

We can also substitute in for b and db by using b = (A+ a) cos θ/2 and db = − 1
2 (A+ a) sin θ/2 dθ. However, since

dσ represents an area and dΩ represents a volume, dσ
dΩ must be positive, and making these substitutions will not give

us a positive dσ
dΩ . However, b db

sin θ dθ can be thought of as a Jacobian that is used to change coordinates for a volumetric
differential, and those are generally taken to be positive. So, using dσ

dΩ = b
sin θ

∣∣ db
dθ

∣∣ this gives us:
dσ

dΩ
=

(
(A+ a) cos θ2

)
sin θ

∣∣∣∣∣
(
− 1

2 (A+ a) sin θ
2

)
dθ

dθ

∣∣∣∣∣
dσ

dΩ
=

(
(A+ a) cos θ2

)
sin θ

(
1
2 (A+ a) sin θ

2

)
dθ

dθ

=
1
2 (A+ a)2 2 cos θ2 sin θ

2 dθ

2 sin θ dθ
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Using sin 2u = 2 sinu cosu:

dσ

dΩ
=

1
2 (A+ a)2 sin θ dθ

2 sin θ dθ

=
(A+ a)2

4

Figure 3: dσ
dΩ In Terms of θ for A+ a = 1

Part c

Integrate part (b) to calculate the total cross section

σtot =
ˆ
dσ =

ˆ
4π

dσ

dΩ
dΩ

=
ˆ π

θ=0

ˆ 2π

φ=0

dσ

dΩ
sin θ dθdφ

What is an intuitive interpretation of the result?

Substituting and integrating, we get:

σtot =
ˆ π

θ=0

ˆ 2π

φ=0

dσ

dΩ
sin θ dθdφ

=
ˆ 2π

φ=0

ˆ π

θ=0

(A+ a)2

4
sin θ dθdφ

= 2π
ˆ π

θ=0

(A+ a)2

4
sin θ dθ

=
(A+ a)2

2
π

ˆ π

θ=0

sin θ dθ

=
(A+ a)2

2
π [− cos θ]π0

=
(A+ a)2

2
π(1 + 1)

= (A+ a)2
π
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This can be interpreted as the maximum cross-sectional area of the incident particle path corridor of interaction with the
target. That is, this is the maximum cross section, given target and probe radii of A and a, respectively.

Part d

In a model of alpha particle scattering from gold nuclei, let a = rα = 1.7 fm and A = rAu = 7.3 fm. What
value of b leads to scattering at θ = 90◦? 10× 10 cm2 detectors are placed 2 m away from the target, which
is a 0.00004 cm thick gold foil, Z = 79, A = 197 g/mol, ρ = 19.3 g/cm3. What percentage of the incident
α particles will scatter into detectors at θ = 15◦ and θ = 165◦?

Assuming that we are using the same scattering model as specified in the first parts of this problem, we have b =
(A+ a) cos θ2 , and b = (9 fm) cos π/22 = 6.36 fm leads to scattering at θ = 90◦.

To find the percentage of incident α particles, we can use dσ
dΩ = dN

I0nt
r2

Asc
, where the fraction is f = dN

I0
, n is the number

of particles per unit volume in the target, t is the thickness of the target, Asc is the area of the detector, and r is the
distance between the target and the detector. Solving for f , we get:

dσ

dΩ
=

dN

I0nt

r2

Asc
dσ

dΩ
= f

r2

ntAsc
dσ

dΩ
ntAsc
r2

= f

Since we know from part b that dσ
dΩ = (A+a)2

4 , this becomes:

(A+ a)2

4
ntAsc
r2

= f

This apparently is independent of the scattering angle, so f is the same regardless of θ. We can calculate n, the number
of target atoms per unit volume, by renaming A = M = 197 g/mol, to avoid a name conflict between the various A’s,
and calculating:

n =
ρNA
M

=

(
19.3 g/cm3

) (
6.022× 1023atoms/mol

)
197 g/mol

= 5.90× 1022atoms/cm3

Now, we can substitute in to determine f (making sure to convert the various length measurements appropriately):

f =
(A+ a)2

4
ntAsc
r2

=
(7.3 fm + 1.7 fm)2

4

(
5.90× 1022atoms/cm3

)
(0.00004 cm)

(
100 cm2

)
(2m)2

= 1.19475× 10−9

Problem 3

We will now compare the above with Rutherford scattering (see Beiser, Chapter 4).

Page 9



Wayne Witzke ProblemSet #3 PHY 361

Part a

It can be shown (extra credit!) that the electric force between an α2+ particle and nucleus of atomic number
Z,

F =
1

4πε0
2Ze2

r2

produces the scattedring relation

cot
θ

2
=

4πε0E
Ze2

b

where E is the kinetic energy of the α-particle. What value of b leads to scattering at θ = 90◦ (use
E = 7.7MeV for the kinetic energy of the α particle)?

(I did not come up with this proof. I found it at http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/impar.html#c1)

Assuming that the target recoil is negligable, the change in momentum associated with Rutherford scattering is ∆P =
Pf − Pi where the magnitudes of the initial and final momenta are the same. The scattering geometry gives ∆P =
2mv0 sin θ

2 (see Figure 4).

Figure 4: Scattering Geometry

Using the impulse and the symmetry of the scattering geometry, we see that only the impulse component along the
symmetry axis, therefore:

∆P =
ˆ
F∆P dt
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Also, the columb force is F = 2Z2ke
2

r2 r̂ where r̂ is the radian unit vector, and F∆P = F cosφ, where φ is the angular
location of the projective relative to the symmetry plane. This gives:

∆P = 2Zke2

ˆ
cosφ
r2

dt = 2mv0 sin
θ

2

We can use conservation of angular momentum to help evaluate the impulse integral:

L = mv0b = mr2 dφ

dt

r2 =
v0b

dφ/dt

Substitution gives:

2mv0 sin
φ

2
= 2Zke2

ˆ
cosφ
v0b

dφ

dt
dt

=
2Zke2

v0b

ˆ φf

φi

cosφdφ

Extending the entrance and exit paths of the scattering trajectory to infinity gives the limits of the angle:

φi = −1
2

(π − θ)

φf =
1
2

(π − θ)

Using the angle difference identiy:

ˆ φf

φi

cosφdφ = sin
[

1
2

(π − θ)
]
− sin

[
−1

2
(π − θ)

]
= 2 cos

θ

2

Solving for the impact parameter b:

2mv0 sin
θ

2
=

2Zke2

v0b
2 cos

θ

2

b =
2Zke2

v0
2 cos θ2

2mv0 sin θ
2

=
Zke2 cos θ2
mv2

0 sin θ
2

=
2Zke2

mv2
0

cot
θ

2

Since k = 1
4πε0

and mv2
0 = 2E , this gives us:

b =
2Ze2

4πε02E
cot

θ

2

=
Ze2

4πε0E
cot

θ

2
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Rearranging, we have:

cot
θ

2
=

4πε0E
Ze2

b

Since cot 90
2 = cot 45 = 1, we have b = Ze2

4πεoE
leading to scattering at 90◦. This can be calculated to give us:

b =
Ze2

4πε0E

=
79e2

4πε0 (7.7MeV)
= 14.77 fm

Part b

Calculate dσ/dΩ and plot it as a function of θ on the same graph as problem 1.

Once again, we have dσ = 2πb db and dΩ = 2π sin θ dθ. We also have b = Ze2

4πε0E
cot θ2 and db = − Ze2

8πε0E
csc2 θ

2 dθ, but
that dσ

dΩ = b
sin θ

∣∣ db
dθ

∣∣. This gives us:
dσ

dΩ
=

(
Ze2

4πε0E
cot θ2

)
sin θ

∣∣∣∣∣∣
(
− Ze2

8πε0E
csc2 θ

2 dθ
)

dθ

∣∣∣∣∣∣
=

(
Ze2

4πε0E

)2
cos θ2
sin θ

2

(
1
2

) (
1

sin2 θ
2

)
sin θ

=

(
Ze2

4πε0E

)2
cos θ2
sin θ

2

(
1
2

) (
1

sin2 θ
2

)
sin θ

Using sin
(
2 θ2
)

= 2 sin θ
2 cos θ2 :

dσ

dΩ
=

(
Ze2

4πε0E

)2
cos θ2
sin θ

2

(
1
2

) (
1

sin2 θ
2

)
2 sin θ

2 cos θ2

dσ

dΩ
=

(
Ze2

4πε0E

)2

4 sin4 θ
2

If we assume that
(

Ze2

4πε0E

)2

= 1 fm2, which is not necessarily impossible, we can graph dσ
dΩ = 1 fm2

4 sin4 θ
2
, shown in Figure 5.

Part c

In the same conditions as in problem 1, what percentage of the incident α particles will scatter into the
detector at i) θ = 15◦, ii) θ = 165◦?

We still have:

f =
dσ

dΩ
ntAsc
r2

=

(
Ze2

4πε0E

)2

4 sin4 θ
2

ntAsc
r2
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Figure 5: dσ
dΩ In Terms of θ for A+ a = 1 and

(
Ze2

4πε0E

)2

= 1 fm2

We know that that E = 7.7MeV for the α particles, and we use Z = 79 for gold. Also, we can use 1
4πε0

= ke, and
kee

2 = 1.44 eV·nm = 1.44MeV·fm to simplify the calculations later. We also know that Axc = 100 cm2, t = 0.00004 cm,
and r = 2m. Also:

n =
ρNA
M

=

(
19.3 g/cm3

) (
6.022× 1023atoms/mol

)
197 g/mol

= 5.90× 1022atoms/cm3

Now, we can substitute in for f (again making sure to convert the various length measurements appropriately). For
θ = 15◦, we get:

f =

(
Ze2

4πε0E

)2

4 sin4 θ
2

ntAsc
r2

=

(
(79)1.44MeV

7.7MeV

)2

4 sin4 15
2

(
5.90× 1022atoms/cm3

)
(0.00004 cm)

(
100 cm2

)
(2m)2

= 4.15869383× 10−9

For θ = 165◦, we get:

f =

(
Ze2

4πε0E

)2

4 sin4 θ
2

ntAsc
r2

=

(
(79)1.44MeV

7.7MeV

)2

4 sin4 165
2

(
5.90× 1022atoms/cm3

)
(0.00004 cm)

(
100 cm2

)
(2m)2

= 1.13250296× 10−8
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Part d

Explain why the total cross section is actually infinite. Up until now, we have ignored the electrons of the
gold atom. What is the effect on small angle (large b) scattering from the entire atom? (hint: what is the
total charge?)

The total cross section is infinite because the electric force, while decreasing with distance, never reaches zero at any
finite distance (in theory, although I wonder if force can be quantized. . .) The effect from the entire atom (including
the electrons) on small angle scattering is extremely small. Since the atom has a net zero charge, the α particle will
experience no electric force due to the atom before the particle has breached the electron shells. Once the α particle has
breached the electron shells, the “uniform density” shell should, again, have no effect, since the total force felt due to the
shell should be balanced at all points near the nucleus. However, the α particle will feel the force due to the charge on
the nucleus once it has passed the electron orbitals.

Problem 4.11

If a particle is deflected by 0.01◦ in each collision, about how many collisions would be necessary to produce
an rms deflection of 10◦? (Use the result from the one-dimnensional random walk problem in statistics
stating that the rms deflection equals the magnitude of the individual deflections times the square root of
the number of deflections.) Compare this result with the number of atomic layers in a gold foil of thickness
10−6 m, assuming that the thickness of each atom is 0.1 nm = 10−10m.

So, Drms = |Di|
√
N . In our case Di = 0.01◦, and Drms = 10◦. This gives us:

√
N =

10◦

0.01◦
= 1000

N = 10002 = 106

Assuming a regular arrangment of atoms across the thickness of the foil, we can estimate the number of atoms across
the thickness of the gold foil as

(
10−6 m

) (
1 atom/10−10m

)
= 104. This is two full orders of magnitude smaller than

106. This number of collisions would produce Drms = 0.01◦
√

104 = 1◦.

Problem 4.16

If the angular momentum of Earth in its motion around the Sun were quantized like a hydrogen electron
according to Equation 4-17, what would Earth’s quantum number be? How much energy would be released in
a transition to the next lowest level? Would that energy release (presumably as a gravity wave) be detectable?
What would be the radius of that orbit? (The radius of Earth’s orbit is 1.50× 1011m.)

Equation 4-17 give us the equation for angular momentum as L = mvr = n~. The mass of Earth is 5.9736 × 1024kg,
and the velocity of the earth is, on average, 2.9783× 104m/s. The quantum number at r = 1.50× 1011m, then, is:

n =
mvr

~

≈
(
5.97× 1024kg

) (
1.5× 1011m

) (
2.98× 104m

s
)

1.05457148× 10−34m2kg/s
≈ 2.53× 1074

To find the energy released by transitioning to the next lower n, we must know the energy at each orbital. We can use
the equation derivations from problem 4.56 here, which gives En = −G

2M2m3

2n2~2 . In this case, we can call E0 = G2M2m3

2~2 ,
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since all of these are constants in this problem. The energy released, then, is

E = En+1 − En

= − E0

(n+ 1)2 +
E0

n2

= E0

(
1
n2
− 1

(n+ 1)2

)

This quantity, due to the size of the values involved, is close to impossible to calculate. Instead, we can normalize this
quantity, so that:

n2 (n+ 1)2
E = E0

(
(n+ 1)2 − n2

)
n2 (n+ 1)2

E = E0

(
n2 + 2n+ 1− n2

)
n2 (n+ 1)2

E = E0 (2n+ 1)

Once again, this is essentially impossible to calculate, but we can make a reasonable estimate by using exponents. Since
E0 = G2M2m3

2~2 = 1.05288033× 10201eV, we can estimate:

(
1074

)2 ((
1074

)
+ 1
)2
E =

(
10201

) (
2
(
1074

)
+ 1
)(

10148
) (

10148
)
E =

(
10201

) (
1074

)(
10296

)
E = 10275

E =
10275

10296

E = 10−21eV

This is an extremely small amount of energy, on the order of 1021 times smaller than the energy released by an electron
transitioning to the next lowest orbit. Since this amount of energy is not enough to excite any known energy detection
device, it is unlikely that this transition could be detected using any known equipment. Any change in the radius of the
Earth’s orbit in this case would be basically imperceptable, so the final radius would still be about 1.5× 1011m.

Problem 4.41

Part a

The current i due to a charge q moving in a circle with frequency frev is qfrev. Find the current due to the
electron in the first Bohr orbit.

Since q = e in this case, since the moving charge is the electron, i = efrev. The question is, then, what is the frequency
of an electron in the first Bohr orbit? The radius of the first Bohr orbit is r1 = a0

Z . The velocity of the first Bohr orbital
is v1 = Zαc. Since f = vn

2πrn
, we have:

f1 =
v1

2πr1

=
Zαc

2π a0
Z

=
Z2αc

2πa0
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Substituting back in for a0 and α:

f1 =
Z2αc

2πa0

=
Z2cke

2

~c
2π ~2

mke2

= Z2c
ke2mke2

2π~3c

= Z2mk
2e4

2π~3

Since f1 = frev in this case, we can substitue back in to i = efrev = eZ2mk2e4

2π~3 = Z2mk2e5

2π~3 = 0.00105 · Z2 A. We are
probably working with hydrogen, since we are looking at the Bohr model, so Z = 1, giving us i = 0.00105A.

Part b

The magnetic moment of a current loop is iA, where A is the area of the loop. Find the magnetic moment
of the electron in the first Bohr orbits in units A ·m2. This magnetic moment is called a Bohr magneton.

We have iA = Z2mk2e5

2π~3 A for the magnetic moment. A in this case is just the area of the electron’s orbit. This is given
by A = πr2

1, where r1 = a0
Z = ~2

Zmke2 . So, we have:

iA = Z2

(
mk2e5

2π~3

)
π

(
~2

Zmke2

)2

= Z2

(
mk2e5

2π~3

)
π

(
~4

Z2m2k2e4

)
=

(e
2

)( ~
m

)
=

e~
2m

= 9.27400793× 10−24 m2A

Problem 4.56

If electric charge did not exist and electrons were bound to protons by the gravitational force to form hydrogen,
derive the corresponding expressions for a0 and En and compute the energy and frequency of the Hα line
and limit the Balmer series. Compare these with the corresponding quantities for “real” hydrogen.

We start with F = GMm
r2 = mv2

r and L = mvr = n~. We can then solve for v, giving us v =
√

GM
r . Combining this

with the equation for L, we get

n~ = mr

√
GM

r

n~ = m
√
GMr

n2~2 = m2GMr
n2~2

m2GM
= r

In this case, I would say that a0 = ~2

Mm2G . This gives a0 = 1.20075776× 1029m. So, we have:

rn = n2a0
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We also have the the total energy of the system would be E = 1
2mv

2 +
(
−GMm

r

)
. In addition, we can find, from the

equation for F , that 1
2mv

2 = GMm
2r . So, we get the total energy is E = GMm

2r − GMm
r = −GMm

2r . Substituting in for
rn we get:

En = −
(
GMm

2

)(
m2GM

n2~2

)
= −G

2M2m3

2n2~2

I’m going to say that E0 = G2M2m3

2h2 . This gives us E0 = 2.64248168× 10−78eV. So, we have

En = −E0

n2

To find the energy and frequency of Hα, that is the transition from n = 3 to n = 2, we have:

EHα = E3 − E2

= −E0

32
+
E0

22

= E0

(
1
4
− 1

9

)
= E0

(
5
36

)
= 3.67× 10−79eV

The frequency, then, is hf = E3 − E2 = EHα = 3.67× 10−79eV. So, f = 3.67× 10−79eV · h = 8.87× 10−65s−1. The
limit to this fictitious Balmer series, then, is:

Elimit = E∞ − E2

= E0M
2

(
1
22
− lim
n→∞

1
n2

)
=

1
4
E0M

2

=
1
4

(
9.45× 10−25 eV

kg2

)(
1.67× 10−27kg

)2
= 6.606× 10−79eV

For real hydrogen, EHα =
(
− 13.6 eV

32

)
+
(

13.6 eV
22

)
= 4.911 eV, f = 4.911 eV · h = 1.19 × 1015s−1, and the Elimit =

13.6 eV
4 = 3.4 eV. The energies and frequencies for this fictitious hydrogen are much, much smaller than for the real thing.
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