
Wayne Witzke ProblemSet #4 PHY 361

Problem 1

Complex numbers, circular, and hyperbolic
functions.

Part a

Use the power series of ex, sin (θ), cos (θ) to
prove Euler’s identity eiθ = cos θ + i sin θ.

The power series of ex, sin (θ), cos (θ) are

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ · · ·

sinx =
∞∑
n=0

(−1)n x2n+1

(2n+ 1)!

= x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

cosx =
∞∑
n=0

(−1)n x2n

(2n)!

= 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·

We can use these to get

cos θ + i sin θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

+i
(
θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

)
We can also use these to get

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ · · ·

= 1 + iθ − θ2

2!
− i (θ)

3

3!
+
θ4

4!
+ i

θ5

5!
− θ6

6!

−iθ
7

7!
+
θ8

8!
+ · · ·

= 1− θ2

2!
+
θ4

4!
− θ6

6!
+
θ8

8!

+iθ − i (θ)
3

3!
+ i

θ5

5!
− iθ

7

7!

= 1− θ2

2!
+
θ4

4!
− θ6

6!
+
θ8

8!

+i

(
θ − (θ)3

3!
+
θ5

5!
− θ7

7!

)
= cos θ + i sin θ

Part b

Use Euler’s identity to show if z = x + iy
where (x, y) are cartesian coordinates in the
complex plane, then z = reiθ where (r, θ) are
the polar coordinates of the same point.

The most direct solution to this problem is to recognize
that on the complex plane x = r cos θ and y = r sin θ,
r =

√
x2 + y2, so:

z = x+ iy

= r cos θ + ir sin θ
= r (cos θ + i sin θ)

But we know, from Euler’s identity, that eiθ = cos θ +
i sin θ, so:

z = reiθ

We can also work backwards. In polar coordinates, r
represents the distance from the origin, and θ represents
the angle made with the x axis. Given the cartesian
coordinates (x, y), we have r =

√
x2 + y2 and tan θ =

y
x , or θ = tan−1 y

x . Euler’s identity is eiθ = cos θ +
i sin θ. So we have:

x+ iy = reiθ

=
√
x2 + y2

(
ei tan−1 y

x

)
=

√
x2 + y2

(
cos
(

tan−1 y

x

)
+ i sin

(
tan−1 y

x

))
But, we know that, if θ = tan−1 y

x , then cos θ =
x√
x2+y2

. Similarly, we know that sin θ = y√
x2+y2

. So
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we get:

x+ iy =
√
x2 + y2

(
cos
(

tan−1 y

x

)
+ i sin

(
tan−1 y

x

))
=

√
x2 + y2

(
x√

x2 + y2
+ i

(
y√

x2 + y2

))
= x+ iy

Part c

The complex conjugate z∗ is formed by replac-
ing i with −i everywhere in z. The modulus
|z| ≡

√
z∗z is the complex analog of absolute

value. Use z = x + iy = reiθ to show the
relations |z|2 = z∗z = zz∗ = x2 + y2 = r2.
Thus the modulus is the distance of z from
the origin.

Using z = reiθ and the relationship described above
between z∗ and z, we have:

|z|2 = z∗z

= re−iθreiθ

= re−iθreiθ

= r2e−iθ+iθ

= r2e0

= r2

Using z = x+ iy we have:

|z|2 = z∗z

= (x− iy) (x+ iy)

= x2 + iyx− iyx− (iy)2

= x2 − i2y2

= x2 + y2

Finally, we have, because multiplication is commutative
in C (C is a field):

z∗z = (x− iy) (x+ iy)
= (x+ iy) (x− iy)
= zz∗

So we have |z|2 = z∗z = zz∗ = x2 + y2 = r2.

Part d

Expand z2 in terms of x, y and also r, θ to
see why |z|2 is more useful in general than z2.

Expanding z2 in terms of x and y, we get:

z2 = (x+ iy)2

= x2 + 2xiy + (iy)2

= x2 + 2ixy − y2

Expanding z2 in terms of r and θ, we get:

z2 =
(
reiθ

)2
= r2e2iθ

Part e

Multiply eiθ by its complex conjugate and ex-
pand using Euler’s identity to prove the re-
lation sin2 θ + cos2 θ = 1. This shows that
eiθtraces out a circle in the complex plane.

The complex conjugate of eiθ is e−iθ, and Euler’s iden-
tity is eiθ = cos θ + i sin θ. Using these, we get:but∣∣eiθ∣∣ = e−iθeiθ

= e−iθeiθ

= (cos θ − i sin θ) (cos θ + i sin θ)

= cos2 θ + i sin θ cos θ − i sin θ cos θ − (i sin θ)2

= cos2 θ − i2 sin2 θ

= cos2 θ + sin2 θ

But, e−iθeiθ = e−iθ+iθ = e0 = 1, so cos2 θ+sin2 θ = 1.

Part f

Use Euler’s identity on eiθ and e−iθ to express
cos θ, sin θ and tan θ in terms of eiθ and e−iθ.
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Euler’s identity is eiθ = cos θ + i sin θ. From this, we
know that e−iθ = cos θ− i sin θ. We can add, giving us

eiθ + e−iθ = cos θ + i sin θ + cos θ − i sin θ
= 2 cos θ

So we have that cos θ = eiθ+e−iθ

2 . We can either sub-
stitute this into Euler’s identity to get:

eiθ =
eiθ + e−iθ

2
+ i sin θ

eiθ − eiθ + e−iθ

2
= i sin θ

2eiθ − eiθ − e−iθ

2
= i sin θ

eiθ − e−iθ

2
= i sin θ

eiθ − e−iθ

2i
= sin θ

Or, we can find sin θ like we found cos θ, but subtracting
instead of adding:

eiθ − e−iθ = cos θ + i sin θ − cos θ + i sin θ
= 2i sin θ

This gives sin θ = eiθ−e−iθ
2i .

Since tan θ = sin θ
cos θ , we have:

tan θ =
sin θ
cos θ

=
eiθ−e−iθ

2i
eiθ+e−iθ

2

=
eiθ − e−iθ

i (eiθ + e−iθ)

= i
eiθ − e−iθ

eiθ + e−iθ

Part g

Using the similar definitions cosh (α) ≡
1
2 (eα + e−α) and sinh (α) ≡ 1

2 (eα − e−α),
derive the analog of Euler’s identity for hyper-
bolic functions. Hint: i becomes ±.

We can subtract sinh (α) from cosh (α) to get:

cosh (α)− sinh (α) =
1
2
(
eα + e−α

)
−1

2
(
eα − e−α

)
=

1
2
(
eα + e−α − eα + e−α

)
=

1
2
(
e−α + e−α

)
= e−α

If we use −α instead of α, we get:

cosh (−α)− sinh (−α) =
1
2
(
e−α + eα

)
−1

2
(
e−α − eα

)
cosh (α) + sinh (α) =

1
2
(
e−α + eα − e−α + eα

)
=

1
2

(eα + eα)

= eα

So we have cosh (α)± sinh (α) = e±α.

Part h

Multiply and expand eα and e−α in two ways
to derive a similar formula as in part (e)
for cosh (α) and sinh (α). This shows that
(cosh (h) , sinh (α)) traces out a hyperbola in
that plane.

We have eαe−α = eα−α = e0 = 1. But, we also have:

eαe−α = (cosh (α) + sinh (α)) (cosh (α)− sinh (α))
= cosh2 (α)− sinh (α) cosh (α)

+ sinh (α) cosh (α)− sinh2 (α)
= cosh2 (α)− sinh2 (α)

So, we have cosh2 (α)− sinh2 (α) = 1
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Part i

Derive the addition formulas for cos (α± β)
and sin (α± β) by multiplying and expanding
eiα · e±iβ and then separating the real and
imaginary parts.

Using Euler’s formula:

eiαe±iβ = eiα±iβ

= ei(α±β))

= cos (α± β) + i sin (α± β)

But also, still using Euler’s formula:

eiαe±iβ = (cosα+ i sinα) (cosβ + i sin (±β))
= (cosα+ i sinα) (cosβ ± i sinβ)
= cosα cosβ ± i sinβ cosα

+i sinα cosβ ± i2 sinα sinβ
= cosα cosβ ± i sinβ cosα

+i sinα cosβ ± sinα sinβ
= cosα cosβ ± sinα sinβ

+i (sinα cosβ ± sinβ cosα)

Since the real parts correspond, and the imaginary parts
correspond, we end up with

cos (α± β) = cosα cosβ ± sinα sinβ

and
sin (α± β) = sinα cosβ ± sinβ cosα

Part j

Obtain the derivatives of sin θ and cos θ,
sinhα, and coshα using the derivative of eiθ

and e±α.

We can take the derivative of eiθ directly:

d

dθ
eiθ = ieiθ

= i cos θ + i2 sin θ
= i cos θ − sin θ

Now, we can use the derivative of Euler’s identity:

d

dθ
eiθ =

d

dx
cos θ +

d

dx
i sin θ

=
d

dx
cos θ + i

d

dx
sin θ

So we have − sin θ+i cos θ = d
dx cos θ+i ddx sin θ. Since

the real parts correspond, and the imaginary parts corre-
spond, we have d

dx cos θ = − sin θ and d
dx sin θ = cos θ.

Unfortunately, this approach won’t work for sinh (α)
and cosh (α). For these, we can determine the deriva-
tives by using sinh (α) = 1

2 (eα − e−α) and cosh (α) =
1
2 (eα + e−α). Using these, we can determine that:

d

dα
sinh (α) =

d

dα

[
1
2
(
eα − e−α

)]
=

1
2
d

dα

[
eα − e−α

]
=

1
2
[
eα − (−1)e−α

]
=

1
2
[
eα + e−α

]
But, this is just cosh (α). So d

dx sinh (α) = cosh (α).
Similary, we have:

d

dα
cosh (α) =

d

dα

[
1
2
(
eα + e−α

)]
=

1
2
d

dα

[
eα + e−α

]
=

1
2
[
eα + (−1)e−α

]
=

1
2
[
eα − e−α

]
And this is just sinh (α). So, d

dx cosh (α) = sinh (α)
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Problem 2

Beats and group velocity.

Part a

Show that two waves of equal frequency
and amplitude travelling in opposite direc-
tions Aeikx−iωt and Ae−ikx−iωt superimpose
to form a standing wave. What is the resulting
wavelength?

Superimposing waves can be added to find the compos-
ite wave function. This gives us:

Aeikx−iωt +Ae−ikx−iωt = Ae−iωt
(
eikx + e−ikx

)
= 2 cos (kx)Ae−iωt

The cos (kx) describes the standing wave in space, and
the e−iωt describes the wave oscillations in time. The
wavelength in space in λ = 2π

k .

Part b

Using exponentials, show that two pure waves
ei(kx−ωt) of frequency (ω1, k1) and (ω2, k2),
superimpose to form a beat pattern of
2 cos (∆kx−∆ωt) eik̄x−iω̄t. Derive the for-
mulas for the combined frequencies (∆ω,∆k)
and

(
ω̄, k̄

)
. Identify the wave packet and the

phase (carrier) wave, and solve the velocity of
each. What beat frequency do you hear?

These waves have equations ei(k1x−ω1t) and ei(k2x−ω2t).
Let’s define θ1 = k1x − ω1t and θ2 = k2x − ω2t. If
we define the average θ̄ = 1

2 (θ2 + θ1) and differential
∆θ = 1

2 (θ2 − θ1), then we can define θ1 = θ̄+ ∆θ and
θ2 = θ̄ − ∆θ. Using these definitions and adding the
wave functions, we get:

eiθ1 + eiθ2 = ei(θ̄+∆θ) + ei(θ̄−∆θ)

= eiθ̄+i∆θ + eiθ̄−i∆θ

= eiθ̄ei∆θ + eiθ̄e−i∆θ

= eiθ̄
(
ei∆θ + e−i∆θ

)
= 2 cos (∆θ) eiθ̄

To get back to an expression in terms of angular fre-
quencies and spacial wave densities, we need to define
the average k̄ = 1

2 (k2 + k1) and ω̄ = 1
2 (ω2 + ω1), and

we need to define the differentials ∆k = 1
2 (k2 − k1)

and ∆ω = 1
2 (ω2 − ω1). Using the definitions θ1 =

k1x − ω1t , θ2 = k2x − ω2t , θ̄ = 1
2 (θ2 + θ1) and

∆θ = 1
2 (θ2 − θ1) we can get:

θ̄ =
1
2

((k2x− ω2t) + (k1x− ω1t))

=
1
2

(k2x+ k1x− ω2t− ω1t)

=
1
2

((k2 + k1)x− (ω2 + ω1) t)

=
1
2

(k2 + k1)x− 1
2

(ω2 + ω1) t

Now we can substitute k̄ = 1
2 (k2 + k1) and ω̄ =

1
2 (ω2 + ω1), so we get:

θ̄ = k̄x− ω̄t

Similarly:

∆θ =
1
2

((k2x− ω2t)− (k1x− ω1t))

=
1
2

(k2x− k1x− ω2t+ ω1t)

=
1
2

((k2 − k1)x− (ω2 − ω1) t)

=
1
2

(k2 − k1)x− 1
2

(ω2 − ω1) t

Here, we substitute in ∆k = 1
2 (k2 − k1) and ∆ω =

1
2 (ω2 − ω1) and we get:

∆θ = ∆kx−∆ωt

Substituting these back into the original wave equation,
we get:

eiθ1 + eiθ2 = 2 cos (∆θ) eiθ̄

= 2 cos (∆kx−∆ωt) ei(k̄x−ω̄t)

= 2 cos (∆kx−∆ωt) eik̄x−iω̄t

The eik̄x−iω̄t = ei(k̄x−ω̄t) = cos
(
k̄x− ω̄t

)
+

i sin
(
k̄x− ω̄t

)
term describes the phase, and the
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cos (∆kx−∆ωt) term describes the wave packet.
From the general wave equation, f(x) = sin (kx), for a
traveling wave we have f (x− vt) = sin (k (x− vt)) =
sin
(
k
(
x−

(
ω
k

)
t
))

= sin (kx− ωt). From this, we can
see that the general wave equation is analogous to the
wave equations for the phase and the group, and that
phase velocity is vφ = ω̄

k̄
and the wave packet (group)

velocity is vg = ∆w
∆k .

The beat frequency is fbeat = ∆ω
2π .

Part c

Interpret part (a) as a specific case of part (b).

Part (a) has two waves with k = k1 = −k2, so ∆k = k,
and k̄ = 0. Also, ω = ω1 = ω2, so we have ∆ω = 0
and ω̄ = ω. This gives us:

Aeikx−iωt +Ae−ikx−iωt = 2A cos (kx− 0t) ei0x−iωt

= 2A cos (kx) e−iwt

Note: For standing waves, this gives that vg = 0, but
vφ = ∞. However, the infinite phase velocity only in-
dicates that the wave propagates across all points in
space simultaneously, which is the case for a standing
wave.

Part d

In the limit that the two frequencies are very
close together, show that the group velocity is
vg = dω/dk for this case. The formula holds
in general.

We have, for any constant v0, that v0 = ω
k . We see,

then, that as k changes, ω must change to preserve
the ratio. Similarly, we have some v1 = ω1

k1
and some

v2 = ω2
k2
, so as k1 → k2, we must also have ω1 → ω2.

Since ∆ω = 1
2 (ω2 − ω1) and ∆k = 1

2 (k2 − k1), we
have:

lim
ω2→ω1

∆ω = lim
ω2→ω1

1
2

(ω2 − ω1)

= dω

and

lim
k2→k1

∆k = lim
k2→k1

1
2

(k2 − k1)

= dk

So, if we take lim
k2→k1

vg = ∆ω
∆k , we also know that ω2 →

ω1, and we end up with vg = dω
dk .

Problem 3

Wave packets. Experiment with
the Java applet on the webpage:
http://phet.colorado.edu/simulations/sims.php?
sim=Fourier_Making_Waves

Part a

Sketch the series of waves formed by adding
each of the coefficients in succession: A1 =
1.27, A3 = 0.52, A5 = 0.25, A7 = 0.18,
A9 = 0.14, A11 = 0.11. Why are all of the
even terms 0?

The wave forms can be seen in figures 1 through 6.

To simulate a square wave like this, all the even terms
must be zero because a non-zero even term would go to
zero in the middle fo the square wave form, causing the
wave to drop to zero in the middle of the square wave.

Part b

Determine the coefficients needed to repro-
duce the “inverted parabola” wave in figure
7:

The coefficients A1 = 0.56, A3 = 0.62, A5 = 0.25,
A7 = 0.07, A9 = 0.01 gave a good very good “inverted
parabola,” as seen in figure 8.
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Figure 1: Wave with A1 = 1.27

Figure 2: Wave with A1 = 1.27 and A3 = 0.52
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Figure 3: Wave with A1 = 1.27, A3 = 0.52 and A5 = 0.25

Figure 4: Wave with A1 = 1.27, A3 = 0.52, A5 = 0.25, A7 = 0.18

Page 8



Wayne Witzke ProblemSet #4 PHY 361

Figure 5: Wave with A1 = 1.27, A3 = 0.52, A5 = 0.25, A7 = 0.18, A9 = 0.14

Figure 6: Wave with A1 = 1.27, A3 = 0.52, A5 = 0.25, A7 = 0.18, A9 = 0.14, A11 = 0.11
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Figure 7: “Inverted parabola” wave for problem 3 part (b)

Figure 8: “Inverted Parabola”
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Part c

Solve a “Wave Game” puzzle of level 8 or
higher and attach the printed result (or email
me a screendump).

Figure 9 shows a completed level 10 game.

Part d

In the “Discrete to Continuous” panel, explain
what the three plots represent. Describe the
variables k1, λ1, k0, σk, and σx.

The Amplitude plot shows the distribution of frequen-
cies used in constructing the final wave form. The Com-
ponents plot shows all of the individual functions super-
imposed in the same plot. The Sum plot shows the
sum of the functions drawn in the Components plot.
The variable k1 gives the magnitude of the separation
between the frequencies of the sinusoidal functions used
to generate the final wave function. It also represents
the fundamental frequency of the spatial function. λ1

gives the separation of the wave packet. k0 gives the
most probable angular frequency in the angular fre-
quency distribution (the phase frequency). Each ki also
describes the momentum of the waves composing the
wave packet. σk describes the uncertainty inherent in
the estimated angular frequency, and therefore velocity
and momentum of the wave packet, and σx describes
uncertainty in the position of the wave packet.

Part e

What is the effect of changing k1 on the
resulting amplitude distribution and wave
packet? What happens as k1 goes to zero?

Decreasing k1 increases the number of samples repre-
sented in the amplitude distribution and increases the
period of the wave equation. When k1 goes to zero,
the amplitude distribution becomes continuous, and the
period of the wave equation becomes infinite, leaving a
single wave packet.

Part f

Repeat for k0 and σk.

Changing k0 changes the maximal value of the ampli-
tude distribution, which shifts the distribution towards
or away from zero. Smaller values of k0 cause fewer
phase oscillations in the wave packet (a lower phase
frequency), while larger values of k0 cause more phase
oscillations (a higher phase frequency).

Changing σk (and, thus, σx in an inverse relationsh-
iop) changes the width of the amplitude distribution
and the width of the wave packet. Smaller values of
σk yield smaller amplitude distributions, allowing us to
know more precisely the momentum of the wave packet,
but preventing us from knowing much about the loca-
tion of the wave packet. Increasing σk decreases our
knowledge about the actual momentum of the wave
packet, but increases our knowledge about the location
of the wave packet.

Part g

Explain what Heisenberg uncertainty principle
has to do with the frequency components of
a wave packet.

The Heisenberg uncertainty principle states that
∆k∆x ∼ 1 (or, using the java applet notation, σkσx ∼
1), and that ∆ω∆t ∼ 1. So, the more we know about
the spacial frequency for a wave packet, the less we
know about the position of the wave packet, and the
more we know about the angular frequency, the less we
know about time. More, because p = ~k and E = ~ω,
we also have ∆x∆p ≥ ~/2 and ∆E∆t ≥ ~/2, telling
us that the more we know about the momentum of a
wave packet, the less we know about the position of
that wave packet, and the more we know about the en-
ergy of a wave packet, the less we know about the time
of that wave packet.
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Figure 9: “Inverted Parabola”
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Problem 5.16

Information is transmitted along a cable in
the form of short electric pulses at 100,000
pulses/s.

Part a

What is the longest duration of the pulses such
that they do not overlap?

The frequency, f , of the electric pulses is 100,000 Hz.
The signal period is 1/f = 0.00001 s. If the electrical
pulse has a duration longer than this, then it will overlap
the next electric pulse.

Part b

What is the range of frequencies to which the
receiving equipment must respond for this du-
ration?

The minimum frequency is 100,000 Hz, otherwise it is
impossible to have a complete waveform in the spec-
ified period. The frequency range can be calculated
by using the uncertainty principle, ∆ω∆t ∼ 1, or in
terms of frequency as ∆f∆t ∼ 1

2π . So we have
∆f ∼ 1

2π∆t = 1
2π·0.00001 or ∆f ∼ 15915Hz . So the

maximum frequency is 115,915 Hz.

Problem 5.25

The wave function describing a state of an
electron confined to move along the x axis is
given at time zero by

Ψ (x, 0) = Ae−x
2/4σ2

Part a

Find the probability of finding the electron in
a region dx centered at x = 0.

The probability distribution for wave functions in gen-
eral is given by P (x) dx = |Ψ|2 dx. First, we should
determine A in Ψ (x, 0). We can do this by normalizing
P (x):

1 =
ˆ ∞
−∞

P (x) dx

1 =
ˆ ∞
−∞

∣∣∣Ae−x2/4σ2
∣∣∣2 dx

1 =
ˆ ∞
−∞

A2e−
1

2σ2 x
2
dx

1 = A2

ˆ ∞
−∞

e−
1

2σ2 x
2
dx

Setting u = 1
2σ2 , using the integerals in [Tipler &

Llewellyn, p. AP-16], and recognizing that e−x
2
is an

even function we get:

1 = A2

ˆ ∞
−∞

e−ux
2
dx

1 = A2

√
π

u

1 = A2
√

2σ2π
1√

2σ2π
= A2

Finally, we have:

P (x) dx =
∣∣∣Ae−02/4σ2

∣∣∣2 dx
= |A · 1|2 dx
= A2dx

=
1√

2σ2π
dx

Part b

Find the probability of finding the electron in
a region dx centered at x = σ.

At x = σ, we have:

P (x) dx =
∣∣∣Ae−σ2/4σ2

∣∣∣2 dx
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=
∣∣∣Ae−1/4

∣∣∣2 dx
= A2e−1/2dx

=
1√

2σ2πe
dx

=
0.6065√

2σ2π
dx

Part c

Find the probability of finding the electron in
a region dx centered at x = 2σ.

At x = 2σ we have:

P (x) dx =
∣∣∣Ae−(2σ)2/4σ2

∣∣∣2 dx
= A2

∣∣∣e−4σ2/4σ2
∣∣∣2 dx

= A2e−2dx

=
1

e2
√

2σ2π
dx

=
0.1353√

2σ2π
dx

Part d

Where is the electron most likely to be found?

The electron is most likely to be found at x = 0.

Problem 5.27

If an excited state of an atom is known to have
a lifetime of 10−7s, what is the uncertainty in
the energy of photons emitted by such atoms
in the spontaneous decay to the ground state?

We can take the lifetime, τ , to be a measure of the
time available to determine the energy of the state. The

uncertainty in the energy corresponding to this time is:

∆E ≥ ~
2τ

≥ 6.5821× 10−16eV·s
(2) (10−7s)

≥ 3.2911× 10−9eV

Problem 5.37

Show that the relation ∆ps∆s > ~ can be
written ∆L∆φ > ~ for a particle moving in a
circle about the z axis, where ps is the linear
momentum tangential to the circle, s is the arc
length, and L is the angular momentum. How
well can the angular position of the electron
be specified in the Bohr atom?

We know that ps = mv, that s = rφ, and that L =
mvr. So, substituting in we have:

~ < ∆ps∆s
< ∆ (mv) ∆ (rφ)

We can assume that m is constant in this case, and if
the particle is moving about a circle, then we can also
assume that r, the radius of the circle, is fixed as well.
So we have:

~ < ∆ (mv) ∆ (rφ)
< ∆mrv∆φ
< ∆L∆φ

The uncertainty in the angular position ∆φ, then, will
always be:

∆φ >
~

∆L

But, L = n~, so ∆L = ∆n~, since ~ is constant. This
leaves us with:

∆φ >
~

∆n~

>
1

∆n
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Problem 5.41

Using the relativistic expression E2 = p2c2 +
m2c4:

Part a

Show that the phase velocity of an electron
wave is greater than c.

We know that vp = E/p, and from special relativity we
have E =

√
p2c2 +m2c4 = γmc2 and p = γmv. So,

we have:

vp =
γmc2

γmv

=
c2

v

But, v < c, so v
v = 1 < c

v and c < c2

v = vp, i.e. the
magnitude of the phase velocity for an electron wave is
always greater than c.

Part b

Show that the group velocity of an electron
wave equals the particle velocity of the elec-
tron.

We know that the group velocity is vg = dE/dp. Cal-
culating the derivative of E, we have:

dE

dp
=

d

dp

(
p2c2 +m2c4

)1/2
=

1
2

2c2p
(
p2c2 +m2c4

)−1/2

=
c2p

(p2c2 +m2c4)1/2

=
c2p

E

But, we know (from special relativity) that p = γmv
and E = γmc2, so:

dE

dp
=

c2p

E

=
c2γmv

γmc2

= v

So, vg = dE/dp = v.
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