
Wayne Witzke ProblemSet #5 PHY 361

Problem 1

Exploring Schrödinger’s equation. For each
of the following potentials, use the applet
http://www.benfold.com/sse/shoot.html
to sketch the potential, determine the first
four energy levels En, draw lines on the plot
representing each energy level. Sketch the
wave function using the En line as the x-axis
for each energy level. Which energy spectrum
best matches the hydrogen atom? Note this
applet uses units where ~2/2m = 1.

Part a

V = −19.4/ (|x|+ 1)

The first four energy levels for this potential are E1 =
−13.66, E2 = −8.36, E3 = −6.25, and E4 = −4.75.
These energy levels, along with their wave forms, are
shown in figure 1. Of the three parts of this problem,
this appears to be the best match for the hydrogen atom
(see figure 2, moslty from library.thinkquest.org).

Part b

(x/2)2 (quadratic), the harmonic oscillator.

The first four energy levels for this potential are E1 =
0.5, E2 = 1.5, E3 = 2.5, and E4 = 3.5. These energy
levels, along with their wave forms, are shown in figure
3.

Part c

Three square wells of width 1.0, depth 15.0,
and period 2.0.

The first four energy levels for this potential are E1 =
−10.975, E2 = −10.860, E3 = −10.738, E4 =
−1.744, and E5 = −1.040. These energy levels, along
with their wave forms, are shown in figure 4.

Problem 2

Approximate the hydrogen atom as an elec-
tron in an infinite square well.

Part a

Solve Schrödinger’s equation with an infinite
square well of width a for the energy levels En
and normalized wave functions.

At its most basic, Schródinger’s equation is ĤΨ = ÊΨ.
However, if the potential does not depend on time
(which it does not in this case), then it can be shown
(and is shown in [Tipler & Lewellyn, pp. 226-227]) that
this equation is a product of two equations, Ψ(x, t) =
ψ(x)φ(t), that Ê = E is constant, and that the equa-
tion can be represented in a time independent form,
Ĥψ(x) = Eψ(x). Ĥ is the Hamiltonian, and can be
expanded as T̂+V̂ , giving us T̂ψ(x)+V̂ ψ(x) = Eψ(x).
V̂ is just V (x). T̂ can be expanded by recognizing that
T = p2

2m , where m in this case is constant, so T̂ = p̂2

2m .
p̂ can also be expanded, recognizing that p = ~k, where
~ is a known constant, giving us p̂ = ~k̂, and T̂ = ~2k̂2

2m .
k̂ gives the x component of momentum divided by ~,
which is k̂ = 1

i
∂
∂x = −i ∂∂x . This gives us:

~2

2m

(
−i ∂
∂x

)2

ψ(x) + V (x)ψ(x) = Eψ(x)

Since we are dealing with an infinite well, we know that
the probability of the particle being outside the well is
zero. We also know that V (x) is constant inside the
infinite square well, and so we can pick V (x) = 0 inside
the well. The time independent Schrödinger’s equation
inside the well becomes:

− ~2

2m
d2ψ(x)
dx2

= Eψ(x)

d2ψ(x)
dx2

= −2mE
~2

ψ(x)

with boundary conditions ψ(x) = 0 at x = 0 and at
x = a. This differential equation can be solved several
ways, for instance using ψ(x) = A sin (kx)+B cos (kx).
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Figure 1: Energy levels and wave forms for V = −19.4/ (|x|+ 1)
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Figure 2: Energy spectrum for the hydrogen atom
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Figure 3: Energy levels and wave forms for V = −19.4/ (|x|+ 1)
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Figure 4: Energy levels and wave forms for V = −19.4/ (|x|+ 1)
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B cos (kx) can be eliminated as a solution by using
ψ(0) = 0 = B cos (k0) = B. Using the boundary
condition at x = a, we have ψ(a) = 0 = A sin ka, or
ka = nπ, n ∈ N∗, which gives k = nπ

a . We can finally
find A by normalizing the wave function:

1 =
ˆ a

0

A2 sin2
(nπx

a

)
dx

= A2

ˆ a

0

1
2

(
1− cos

(
2
nπx

a

))
dx

=
A2

2

(
x− a

2nπ
sin
(

2
nπx

a

)) ∣∣∣∣a
x=0

=
A2

2

(
a− a

2nπ
sin
(

2
nπa

a

)
− 0
)

=
A2

2

(
a− a

2nπ
sin (2nπ)

)
=

A2

2

(
a− a

2nπ
(0)
)

= A2 a

2
2
a

= A2√
2
a

= A

So, for ψ(x) we finally have that

ψ(x) =

√
2
a

sin
(nπ
a
x
)

Plugging this back into the time independent
Schrödinger equation, we get:

d2

dx2

(√
2
a

sin
(nπ
a
x
))

= −2mE
~2

√
2
a

sin
(nπ
a
x
)

−
(nπ
a

)2
√

2
a

sin
(nπ
a
x
)

= −2mE
~2

√
2
a

sin
(nπ
a
x
)

−
(nπ
a

)2

= −2mE
~2

~2n2π2

2ma2
= En

Part b

Solve for a so that the n = 2 → 1 transition
has the same wavelength as hydrogen.

We have EH2→H1 = 2π~c
λ . The first transition for the

hydrogen atom is at λ = 121.57 (see figure 2, and
[Tipler & Lewellyn, p. 150]). So, we have EH2→H1 =
2πc~

121.57 . The energy transition from E2 to E1 should
result in energy equal to

E2 − E1 =
4~2π2

2ma2
− ~2π2

2ma2

=
3~2π2

2ma2

Setting this equal to EH2→H1, we get:

2πc~
121.57

=
3~2π2

2ma2

a2 =
3 (121.57) ~π

4cm

a =

√
3 (121.57) ~π

4cm

With m the mass of the electron, we get a = 0.333 nm.

Part c

Compare the wavelength of the n = 3 → 1
transition with hydrogen.

Using E = 2π~c
λ = E3 − E1, we have:

2π~c
λ

=
9~2π2

2ma2
− ~2π2

2ma2

2π~c
λ

=
4~2π2

ma2

2π~cma2

4~2π2
= λ

cma2

2~π
= λ

Using a from part (c), we have λ = 45.589 nm. The
wavelength for the 3 → 1 transition for hydrogen is
λ = 102.57 nm (see figure 2). These are not equal.
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Part d

What is the ionization potential in the model?

Because E ∼ n2, as n → ∞, E → ∞. So, the ioniza-
tion potential would be infinite energy.

Part e

What properties of the infinite square well
make it a bad approximation of hydrogen?

Once a value for a has been chosen, only that energy
level will match the actual hydrogen atom. The energy
levels don’t get closer together as n increases, and there
is no ionization energy. It’s just wrong!

Problem 3

Consider the nucleus of heavy hydrogen,
the deutron, which is a proton and a neu-
tron bound by the strong nuclear force.
Since the neutron and proton have about
the same mass, the reduced mass is m =
mpmn/ (mp +mn) ≈ 1

2mp = 469MeV/c2.
The binding energy B = 2.225MeV has been
measured from the energy of the gamma ray
produced when a neutron captures on a pro-
ton. Approximate this system as a neutron of
reduced mass m in a square well, as shown
in Figure 5. The radius of the deuteron is
a = 2.14 fm.

Figure 5: Square Well for a Reduced Mass Neutron

Part a

Use the wavefunctions ψI(x) = A cos (kx) in-
side the well, and ψII(x) = e−κ|x| outside.
Show that these functions are solutions of the
Schrödinger equation, and solve for k, κ as a
function of V , B, a, m, and ~.

Using the time independent Schrödinger equation:

~2

2m

(
−i ∂
∂x

)2

ψ(x) + V (x)ψ(x) = Eψ(x)(
− ~2

2m

)
∂2

∂x2
ψ(x) + V (x)ψ(x) = Eψ(x)

(
− ~2

2m

)
∂2

∂x2
ψ(x) = Eψ(x)− V (x)ψ(x)(

− ~2

2m

)
∂2

∂x2
ψ(x) = ψ(x) (E − V (x))

we know that ψI(x) = A cos (kx) is a solution because:

− ∂2

∂x2
A cos (kx) = A cos (kx)

−A ∂2

∂x2
cos (kx) = A cos (kx)

k2 cos (kx) = cos (kx)

And, if k2 = 1, the differential equation is satisfied.
Similarly, ψII(x) = e−κ|x| is a solution because:

∂2

∂x2
e−κ|x| = e−κ|x|

κ2e−κ|x| = e−κ|x|

Here also, if κ2 = 1, the differential equation is satisfied.
Using these, we can calculate k and κ by substituting
into Schrödinger’s equation above:(
− ~2

2m

)
∂2

∂x2
A cos (kx) = A cos (kx) (E − V (x))

~2

2m
k2 cos (kx) = cos (kx) (E − V (x))

~2

2m
k2 = E − V (x)
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Here, we have V (x) = −V0, and E = −B. This gives:

k2 =
2m (−B + V0)

~2

k =

√
2m (−B + V0)

~2

=

√
2m (−B + V0)

~

Now, solving for κ:(
− ~2

2m

)
∂2

∂x2
e−κ|x| = e−κ|x| (E − V (x))

− ~2

2m
κ2e−κ|x| = e−κ|x| (E − V (x))

− ~2

2m
κ2 = E − V (x)

Here, we have V (x) = 0, and E = −B. This gives:

−κ2 =
−2Bm

~2

κ =

√
2Bm
~2

=
√

2Bm
~

Part b

Solve the two boundary conditions at x = a to
come up with the formula tan (ka) = κa/ka.
Using the binding energy, calculate the value
of κa and plot the LHS and RHS of the above
equation as a function of ka. Circle the solu-
tions for allowed values of ka, where the two
curves cross. The lowest value represents the
ground state. Using the value of ka from the
crossing point, calculate the depth of the po-
tential V and compare it to the binding energy
of the hydrogen atom.

The two boundary conditions at x = a are that ψI(a) =
ψII(a) and that ψ′I(a) = ψ′II(a). Calculating ψ′I and
ψ′II , we get:

ψ′I(x) = −Ak sin (kx)

ψ′II(x) = −κe−κ|x|

This gives us:

A cos (ka) = e−κ|a|

−Ak sin (ka) = −κe−κ|a|

Ak sin (ka) = κe−κ|a|

We can now divide the second result by the first to get:

Ak sin (ka)
A cos (ka)

=
κe−κ|a|

e−κ|a|

k tan (ka) = κ

tan (ka) =
κ

k

tan (ka) =
κ

k

(a
a

)
tan (ka) =

κa

ka

Using the binding energy and other constants from
above, we can calculate:

κa =
√

2Bm
~

a

=

√
2 (2.225MeV) (469MeV)

~c
(2.14 fm)

≈ 0.495

Now we can plot f(ka) = tan (ka) and g(ka) = 0.495
ka .

This gives us figure 6.

Estimating the lowest value ka crossing point to be at
0.6, we can calculate V using:

0.6 =

√
2m (−B + V0)

~
a

1
2m

(
0.6 ~
a

)2

+B = V0

This gives V0 = c2

2(469MeV)

(
0.6 ~

2.14 fm

)2

+2.225MeV, or

V0 ≈ 5.49MeV. This is much greater than the binding
energy of the hydrogen atom.
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Figure 6: Plot of f(ka) = tan(ka) and g(ka) = 0.495
ka with intersection points circled
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Part c

Are there any excited states of the deutron?
Hint: compare the energy of the first excited
state to V (no calculation necessary).

No. The first “excited state” will completely free the
pairing.

Problem 4

Consider the step potential

V (x) = V0·θ(x) =

{
0 in region 1 (x < 0)
V0 in region 2 (x > 0)

Part a

What type of force does this potential de-
scribe?

This potential represents an impulse.

Part b

Show that ψ(x) = e±ikix are solutions of the
Schrödinger equation for this potential in re-
gion 1 (x < 0) and region 2 (x > 0).

The time independent Schrödinger’s equation is:

~2

2m

(
−i ∂
∂x

)2

ψ(x) + V (x)ψ(x) = Eψ(x)

In region 1, this becomes:

~2

2m

(
−i ∂
∂x

)2

ψ(x) = Eψ(x)

And in region 2 this becomes:

~2

2m

(
−i ∂
∂x

)2

ψ(x) = ψ(x) (E − V0)

Substituting in ψ(x) = e±ikix into these equations
yields, for the V (x) = 0 region:(

− ~2

2m

)
∂2

∂x2
e±ik1x = Ee±ik1x(

− ~2

2m

)
(±i)2 k2

1e
±ik1x = Ee±ik1x(

~2

2m

)
k2
1e
±ik1x = Ee±ik1x

Since e±ikix cancels, this is a solution to the V (x) = 0
region. For the V (x) = V0 region, we have:(

− ~2

2m

)
∂2

∂x2
e±ik2x = e±ik2x (E − V0)(

− ~2

2m

)
(±i)2 k2

2e
±ik2x = e±ik2x (E − V0)(

~2

2m

)
k2
2e
±ik2x = e±ik2x (E − V0)

Once again, e±ikix cancels, so this is a solution to the
time-independent Schrödinger’s equation.

Part c

Calculate ki in regions i = 1, 2 in terms of the
total energy E.

In region 1, we have:(
− ~2

2m

)
(±i)2 k2

1e
±ik1x = Ee±ik1x(

~2

2m

)
k2
1e
±ik1x = Ee±ik1x(

~2

2m

)
k2
1 = E

k2
1 =

2mE
~2

k1 = ±
√

2mE
~2

k1 = ±
√

2mE
~
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In region 2, we have:(
− ~2

2m

)
(±i)2 k2

2e
±ik2x = e±ik2x (E − V0)(

~2

2m

)
k2
2e
±ik2x = e±ik2x (E − V0)(

~2

2m

)
k2
2 = (E − V0)

k2
2 =

2m (E − V0)
~2

k2 = ±
√

2m (E − V0)
~

Part d

To describe the reflection and transmission of
a quantum particle, let the total wavefunc-
tion be ψ(x) = Aeik1x + Be−ik1x if x < 0
and ψ(x) = Ceik2x if x > 0. Label the in-
cident, transmitted, and reflected wave func-
tions. Why is the term De−ik2x not included?

Aeik1x is the incident wave function. Be−ik1x is the
reflected wave function. Ceik2x is the transmitted wave
function. De−ik2x is not included because it describes
a wave incident from the right, but nothing comes from
the right (that is, there is no cuasality for this term), so
this term must go to zero.

Part e

Apply the boundary conditions at x = 0 to ob-
tain formulas for the coefficients of reflections
R ≡

(
B
A

)2
and transmission T ≡ k2

k1

(
C
A

)2
as

a function of E/V0 (the factor of k2/k1 ac-
counts for the difference in velocity).

If ψ1(x) = Aeik1x+Be−ik1x and ψ2(x) = Ceik2x , then
at the boundary conditions we have that ψ1(0) = ψ2(0),
and that ψ′1(0) = ψ′2(0). Calculating the first deriva-
tives, so that we can relate these boundary conditions,
we get:

ψ′1(x) = ik1Ae
ik1x − ik1Be

−ik1x

ψ′2(x) = ik2Ce
ik2x

So, at the boundary conditions we get:

ψ1(0) = ψ2(0)
Aeik1(0) +Be−ik1(0) = Ceik2(0)

A+B = C

and:

ψ′1(0) = ψ′2(0)
ik1Ae

ik1(0) − ik1Be
−ik1(0) = ik2Ce

ik2(0)

k1A− k1B = k2C

To find R =
(
B
A

)2
, we can multiply A+B = C through

by k2 and then subtract k1A− k1B = k2C:

k2A + k2B = k2C
(−) k1A − k1B = k2C

(k2 − k1)A + (k2 + k1)B = 0

So, − (k2 − k1)A = (k2 + k1)B, or B
A = k1−k2

k1+k2
, and

R =
(
k1−k2
k1+k2

)2

. Similarly, to find T = k2
k1

(
C
A

)2
we can

multiply A+B = C through by k1 and add k1A−k1B =
k2C. This yields:

k1A + k1B = k1C
(+) k1A − k1B = k2C

2k1A + 0 = (k1 + k2)C

So, CA = 2k1
(k1+k2)

, and T = k2
k1

(
2k1

(k1+k2)

)2

= 4k1k2
(k1+k2)

2 .
Choosing positive k1 and k2 and substituting in k1 =
√

2mE
~ and k2 =

√
2m(E−V0)

~ we get:

R =
(
k1 − k2

k1 + k2

)2

=

 √2mE
~ −

√
2m(E−V0)

~
√

2mE
~ +

√
2m(E−V0)

~

2

=


(√

E −
√

(E − V0)
)

(√
E +

√
(E − V0)

)
2
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and:

T =
4k1k2

(k1 + k2)2

=
4
(√

2mE
~

)(√
2m(E−V0)

~

)
(√

2mE
~ +

√
2m(E−V0)

~

)2

=
4 2m

~2

(√
E2 − EV0

)(√
2m
~

(√
E +

√
(E − V0)

))2

=
4 2m

~2

(√
E2 − EV0

)
2m
~2

(√
E +

√
(E − V0)

)2

=
4
(√
E2 − EV0

)(√
E +

√
(E − V0)

)2

Part f

Show that R+T = 1, i.e. the particle is either
reflected or transmitted.

Using R =
(
k1−k2
k1+k2

)2

and T = 4k1k2
(k1+k2)

2 , we get:

R+ T =
(k1 − k2)2 + 4k1k2

(k1 + k2)2

=
k2
1 − 2k1k2 + k2

2 + 4k1k2

(k1 + k2)2

=
k2
1 + 2k1k2 + k2

2

(k1 + k2)2

=
(k1 + k2)2

(k1 + k2)2

= 1

Problem 6.3

In a region of space, a particle has a wave
function given by ψ(x) = Ae−x

2/2L2
and en-

ergy ~2/2mL2, where L is some length.

Part a

Find the potential energy as a function of x,
and sketch V versus x.

We start with the time-independent Schrödinger equa-
tion:

−~2

2m
d2ψ(x)
dx2

+ V (x)ψ(x) = Eψ(x)

Since we know ψ(x) and E, it is possible to determine
V (x), the potential energy:

V (x) = E +
~2

2mψ(x)
d2ψ(x)
dx2

Substituting in for ψ(x) and E, we have:

V (x) =
~2

2mL2
+

~2

2mAe−x2/2L2

d2Ae−x
2/2L2

dx2

=
~2

2mL2
+

~2

2me−x2/2L2

d
(
−x
L2 e
−x2/2L2

)
dx

=
~2

2mL2

1 +
d
dx

(
−xe−x2/2L2

)
e−x2/2L2


=

~2

2mL2

(
1 +
−e−x2/2L2

+ x2

L2 e
−x2/2L2

e−x2/2L2

)

=
~2

2mL2

(
1− 1 +

x2

L2

)
=

~2x2

2mL4

The graph of the potential is shown in figure 7.

Part b

What is the classical potential that has this
dependence?

Since ~2/mL4 is just a constant, we can call it k, in
which case V (x) = 1

2kx
2. This is the potential for a

simple harmonic oscillator.
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Figure 7: Graph of V (x) = ~2x2

2mL4

Problem 6.4

Part a

For problem 6.3, find the kinetic energy as a
function of x.

We know that E = T + V , so T = E − V . This gives
us

T =
~2

2mL2
− ~2x2

2mL4

=
~2

2mL2

(
1− x2

L2

)

Part b

Show that x = L is the classical turning point.

From our equation for T, T = ~2

2mL2

(
1− x2

L2

)
, we see

that at x = L, we have T = ~2

2mL2

(
1− L2

L2

)
= 0.

Algorithm 0.1 Equation 6-21 from the book

V (x) = 0 0 < x < L

V (x) = ∞ x < 0 andx > L

Classical turning points occur when the kinetic energy
is zero, which in this case occurs at x = L.

Part c

The potential energy of a simple harmonic os-
cillator in terms of its angular frequency ω is
given by V (x) = 1

2mω
2x2. Compare this with

your answer to part (a) of problem 6.3, and
show that the total energy for this wave func-
tion can be written E = 1

2~ω.

In part (a) of problem 6.3, we have that V (x) =
~2x2

2mL4 . This equation can be modified to better resem-
ble V (x) = 1

2mω
2x2 by:

V (x) =
~2x2

2mL4

=
1
2
mx2 · ~2

m2L4

This gives ω = ~
mL2 . We can now see that:

E =
1
2

~ · ~
mL2

=
1
2

~ω

Problem 6.10

A particle is in the ground state of an infinite
square well potential given by Equation 6-21.
Find the probability of finding the particle in
the interval ∆x = 0.002L at the following
values for x (note that since ∆x is very small,
you need not do any integration).
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Part a

x = L/2

From problem 2, we have ψ(x) =
√

2
L sin

(
nπ
L x
)
.

In the ground state, with n = 1, we have ψ(x) =√
2
L sin

(
π
Lx
)
. Substituting in x = L/2, we get:

ψ(x) =

√
2
L

sin
(π

2

)
=

√
2
L

Using the mandated approximation, the probability is
given by |ψ(x)|2 ∆x, or 2

L · 0.002L = 0.004

Part b

x = 2L/3

From problem 2, we have ψ(x) =
√

2
L sin

(
nπ
L x
)
.

In the ground state, with n = 1, we have ψ(x) =√
2
L sin

(
π
Lx
)
. Substituting in x = 2L/3, we get:

ψ(x) =

√
2
L

sin
(

2π
3

)
=

√
2
L

√
3
4

=

√
3

2L

The probability is given by |ψ(x)|2 ∆x, or 3
2L ·0.002L =

0.003

Part c

x = L

This one is trickier. Since ψ(L) = 0, but ∆x 6= 0, we
can’t actually calculate the function at ψ(L). Instead,
we can recognize that half the width of ∆x, outside the
well, has zero probability, and so will not contribute to
the total probability. Instead, we can look at the remain-
ing half of the interval, ∆x, inside the well. This has a
width of ∆x/2 = 0.001L, and should be evaluated at

x = L (1− 0.001/2). From ψ(x) =
√

2
L sin

(
π
Lx
)
, we

get:

ψ(x) =

√
2
L

sin (π (1− 0.001/2))

=

√
2
L

(0.00157)

The probability is given by |ψ(x)|2 ∆x, or:

2
L

(0.00157)2 · 0.001L ≈ 4.9348× 10−9

Or, |ψ(x)|2 ∆x ≈ 0. Incidentally, naively calculating at
x = L also gives |ψ(x)|2 ∆x = 0, which is probably
sufficient as an approximation in this case.
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