
Wayne Witzke ProblemSet #7 PHY 361

Problem 1

[35 pts] Hydrogen radial wavefunctions: the hydrogen potential is V (r) = −Zkee2/r.

Part a

Using the Lapacian ∇2 in spherical coordinates, show that

T̂ =
−~2

2µ
1
r

∂2

∂r2
r +

L̂2

2µr2

where the second term represents rotational kinetic energy, with

L̂2 = −~2

(
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂φ2

)
Write Schrödinger’s equation for ψ(r,θ, φ) of the hydrogen atom using this form of T̂ .

Similar to problem (2) part (a) in homework set #6, we start with the multi-dimensional time-independent Schrödinger’s equation
and substitute in the Lapacian in spherical coordinates:

Ĥψ = Eψ

T̂ψ + V̂ ψ = Eψ

− ~2

2µ
∇2ψ + V̂ ψ = Eψ

− ~2

2µ

(
1
r2

∂

∂r

(
r2
∂

∂r

)
+

1
r2

[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

])
ψ + V̂ ψ = Eψ

So now we must show that 1
r2

∂
∂r

(
r2 ∂
∂r

)
= 1

r
∂2

∂r2 r, so:

1
r2

∂

∂r

(
r2
∂

∂r

)
=

1
r

∂2

∂r2
r(

∂2

∂r2
+

2
r

∂

∂r

)
f (r) =

1
r

∂2

∂r2
rf (r)(

∂2

∂r2
+

2
r

∂

∂r

)
f (r) =

1
r

∂

∂r

(
∂

∂r
rf (r)

)
(
∂2

∂r2
+

2
r

∂

∂r

)
f (r) =

1
r

∂

∂r
(rf ′ (r) + f (r))(

∂2

∂r2
+

2
r

∂

∂r

)
f (r) =

1
r

(rf ′′ (r) + f ′ (r) + f ′ (r))(
∂2

∂r2
+

2
r

∂

∂r

)
f (r) = f ′′ (r) +

2
r
f ′ (r)

∂2

∂r2
+

2
r

∂

∂r
=

∂2

∂r2
+

2
r

∂

∂r

So, we can replace 1
r2

∂
∂r

(
r2 ∂
∂r

)
with 1

r
∂2

∂r2 r.

− ~2

2µ

(
1
r

∂2

∂r2
r +

1
r2

[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

])
ψ + V̂ ψ = Eψ(

−~2

2µ
1
r

∂2

∂r2
r +
−~2

2µr2

[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

])
ψ + V̂ ψ = Eψ
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If L̂2 = −~2
(

1
sin θ

∂
∂θ sin θ ∂∂θ + 1

sin2 θ
∂2

∂φ2

)
, then we have:

−~2

2µ
1
r

∂2

∂r2
r +

L̂2

2µr2
ψ + V̂ ψ = Eψ

T̂ψ + V̂ ψ = Eψ

Schrödinger’s equation is, then:(
−~2

2µ
1
r

∂2

∂r2
r +

L̂2

2µr2

)
ψ (r, θ, φ) + V̂ ψ (r, θ, φ) = Eψ (r, θ, φ)

But V̂ = V (r) = −Zkee2/r, so(
−~2

2µ
1
r

∂2

∂r2
r +

L̂2

2µr2

)
ψ (r, θ, φ)− Zkee

2

r
ψ (r, θ, φ) = Eψ (r, θ, φ)

Part b

Make the substitution ψ(r, θ, φ) = 1
ru(r)Ylm(θ, φ). The factor 1

r takes into account the spreading out of the wave
function as it gets farther from the origin. Use the eigenvalue of Ylm,

L̂2Ylm = ~2l (l + 1)Ylm

to simplify the equation.

We start with: (
−~2

2µ
1
r

∂2

∂r2
r +

L̂2

2µr2

)
ψ (r, θ, φ)− Zkee

2

r
ψ (r, θ, φ) = Eψ (r, θ, φ)

Substituting in ψ(r, θ, φ) = 1
ru(r)Ylm(θ, φ), we get:

E
1
r
u(r)Ylm(θ, φ) =

(
−~2

2µ
1
r

∂2

∂r2
r +

L̂2

2µr2

)
1
r
u(r)Ylm(θ, φ)− Zkee

2

r

1
r
u(r)Ylm(θ, φ)

=
−~2

2µ
1
r
Ylm (θ, φ)

∂2

∂r2
r

r
u (r) +

u (r)
2µr3

L̂2Ylm(θ, φ)− Zkee
2

r

1
r
u(r)Ylm(θ, φ)

=
−~2

2µ
1
r
Ylm (θ, φ)

∂2

∂r2
u (r) +

u (r)
2µr3

~2l (l + 1)Ylm(θ, φ)− Zkee
2

r

1
r
u(r)Ylm(θ, φ)

E
1
r
u (r) =

−~2

2µ
1
r

∂2

∂r2
u (r) +

u (r)
2µr3

~2l (l + 1)− Zkee
2

r

1
r
u(r)

Eu (r) =
−~2

2µ
∂2

∂r2
u (r) +

u (r)
2µr2

~2l (l + 1)− Zkee
2

r
u(r)

Part c

Show that the result looks like the Schrödinger equation for u(r) in one dimension with a centrifugal potential Vc(r) =
~2l (l + 1) /2µr2 in addition to the Colomb potential. Compare with the potential of the centrifugal force F = mac =
mv2/r using L = mvr.
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If Vc(r) = ~2l (l + 1) /2µr2, then we can replace ~2l (l + 1) /2µr2:

Eu (r) =
−~2

2µ
∂2

∂r2
u (r) + Vc (r)u (r)− Zkee

2

r
u(r)

If Vc (r) = ~2l (l + 1) /2µr2, then we should be able to find F = − d
dr

(
~2l (l + 1) /2µr2

)
. So:

F = − d

dr

(
~2l (l + 1)

2µr2

)
F = −~2l (l + 1)

2µ
d

dr

(
r−2
)

F = −~2l (l + 1)
2µ

− 2r−3

F =
~2l (l + 1)

µ
r−3

F =
L2

µr3

F =
(µvr)2

µr3

F =
µv2

r

So, we can see that the derivative of Vc (r) gives us an apparent centrifugal force.

Part d

Make the substitutions

u(r) = U(ρ)where ρ =
2r
rn

rn =
na0

Z
where a0 =

~2

µkee2

En =
−Z2E0

n2
whereE0 =

µk2
ee

4

2~2

to obtain the dimensionless equation (
∂2

∂ρ2
− l (l + 1)

ρ2
+
n

ρ
− 1

4

)
U(ρ) = 0

Starting with:

Eu (r) =
−~2

2µ
∂2

∂r2
u (r) +

u (r)
2µr2

~2l (l + 1)− Zkee
2

r
u (r)

and substituting in u(r) = U(ρ), where ρ = 2r
rn

, and recognizing that r = ρrn/2, we get:

EU (ρ) =
−~2

2µ
∂2

∂r2
U (ρ) +

U (ρ)
2µr2

~2l (l + 1)− Zkee
2

r
U (ρ)

=
−~2

2µ
∂2

∂r2
U (ρ) +

U (ρ)

2µ
(
ρrn

2

)2 ~2l (l + 1)− 2Zkee2

ρrn
U (ρ)

Page 3



Wayne Witzke ProblemSet #7 PHY 361

=
−~2

2µ
∂2

∂r2
U (ρ) +

U (ρ)

2µ
(
ρrn

2

)2 ~2l (l + 1)− 2Zkee2

ρrn
U (ρ)

=
−~2

2µ
∂2

∂r2
U (ρ) +

2U (ρ)
µ (ρrn)2

~2l (l + 1)− 2Zkee2

ρrn
U (ρ)

We also have that ∂ρ
∂r

∂
∂ρ = ∂

∂r , and that

∂2

∂r2
=

∂

∂r

(
∂ρ

∂r

∂

∂ρ

)

But, we know that ∂ρ
∂r = ∂

∂r

(
2r
rn

)
= 2

rn
, so this becomes:

∂2

∂r2
=

∂

∂r

(
2
rn

∂

∂ρ

)
=

2
rn

∂

∂r

(
∂

∂ρ

)
=

2
rn

(
∂ρ

∂r

∂

∂ρ

)(
∂

∂ρ

)
=

(
2
rn

)2
∂2

∂ρ2

=
4
r2n

∂2

∂ρ2

So, substituting this in, we get:

EU (ρ) =
−~2

2µ
∂2

∂r2
U (ρ) +

2U (ρ)
µ (ρrn)2

~2l (l + 1)− 2Zkee2

ρrn
U (ρ)

=
−~2

2µ
4
r2n

∂2

∂ρ2
U (ρ) +

2U (ρ)
µ (ρrn)2

~2l (l + 1)− 2Zkee2

ρrn
U (ρ)

Now, since rn = na0
Z , a0 = ~2

µkee2
, En = −Z2E0

n2 , and E0 = µk2
ee

4

2~2 .

EU (ρ) =
−~2

2µ
4
r2n

∂2

∂ρ2
U (ρ) +

2U (ρ)
µ (ρrn)2

~2l (l + 1)− 2Zkee2

ρrn
U (ρ)

=
−~2

2µ
4(

na0
Z

)2 ∂2

∂ρ2
U (ρ) +

2U (ρ)

µ
(
ρna0
Z

)2 ~2l (l + 1)− 2Zkee2

ρna0
Z

U (ρ)

=
−~2

2µ
Z24

(na0) 2

∂2

∂ρ2
U (ρ) +

2ZU (ρ)
µ (ρna0)2

~2l (l + 1)− 2Z2kee
2

ρna0
U (ρ)

=
−~2

2µ
Z24(

n ~2

µkee2

)2

∂2

∂ρ2
U (ρ) +

2Z2U (ρ)

µ
(
ρn ~2

µkee2

)2 ~2l (l + 1)− 2Z2kee
2

ρn ~2

µkee2

U (ρ)

=
−~2

2µ

(
µkee

2
)2
Z24

(n~2)2
∂2

∂ρ2
U (ρ) +

(
µkee

2
)2 2ZU (ρ)

µ (ρn~2)2
~2l (l + 1)− 2µe2Z2k2

ee
2

ρn~2
U (ρ)

=
−~2

2µ
µ2k2

ee
4Z24

n2~4

∂2

∂ρ2
U (ρ) +

µ2k2
ee

42Z2U (ρ)
µρ2n2~4

~2l (l + 1)− 2µk2
ee

4Z2

ρn~2
U (ρ)

=
−1
2
µk2

ee
4Z24

n2~2

∂2

∂ρ2
U (ρ) +

µk2
ee

44Z2U (ρ)
2ρ2n2~2

l (l + 1)− 4µk2
ee

4Z2

2ρn~2
U (ρ)
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= −E0Z
24

n2

∂2

∂ρ2
U (ρ) +

E0Z
24U (ρ)
ρ2n2

l (l + 1)− 4E0Z
2n

ρn2
U (ρ)

= 4En
∂2

∂ρ2
U (ρ)− 4En

U (ρ)
ρ2

l (l + 1) + 4En
n

ρ
U (ρ)

Here, we know that E = En, so we have En cancelling:

EnU (ρ) = 4En
∂2

∂ρ2
U (ρ)− 4En

U (ρ)
ρ2

l (l + 1) + 4En
n

ρ
U (ρ)

U (ρ) = 4
∂2

∂ρ2
U (ρ)− 4

U (ρ)
ρ2

l (l + 1) + 4
n

ρ
U (ρ)

0 = 4
∂2

∂ρ2
U (ρ)− 4

U (ρ)
ρ2

l (l + 1) + 4
n

ρ
U (ρ)− U (ρ)

0 =
∂2

∂ρ2
U (ρ)− U (ρ)

ρ2
l (l + 1) +

n

ρ
U (ρ)− U (ρ)

4

0 =
(
∂2

∂ρ2
− l (l + 1)

ρ2
+
n

ρ
− 1

4

)
U (ρ)

Part e

Use repeated product rules to show that

(fgh)′′ = f ′′gh+ fg′′h+ fgh′′ + 2f ′g′h+ 2f ′gh′ + 2fg′h′

Use this and the substitution U(ρ) = e−p/2ρlL(ρ) to obtain Laguerre’s differential equation

ρL′′ + (2l + 2− ρ)L′ + (n− l − 1)L = 0

The solutions are associated Laguerre polynomials L(2l+1)
n−l−1(ρ).

Assuming that these are all functions in x, we get:

∂

∂x
fgh =

∂

∂x
f (gh)

= f
∂

∂x
gh+ f ′gh

= f (gh′ + g′h) + f ′gh

= fgh′ + fg′h+ f ′gh

and:

∂2

∂x2
fgh =

∂

∂x
(fgh′ + fg′h+ f ′gh)

=
∂

∂x
fgh′ +

∂

∂x
fg′h+

∂

∂x
f ′gh

=
∂

∂x
f (gh′) +

∂

∂x
f (g′h) +

∂

∂x
f ′ (gh)

= f
∂

∂x
(gh′) + f ′ (gh′) + f

∂

∂x
(g′h) + f ′ (g′h) + f ′

∂

∂x
(gh) + f ′′ (gh)

= f (gh′′ + g′h′) + f ′gh′ + f (g′h′ + g′′h) + f ′g′h+ f ′ (gh′ + g′h) + f ′′gh

= fgh′′ + fg′h′ + f ′gh′ + fg′h′ + fg′′h+ f ′g′h+ f ′gh′ + f ′g′h+ f ′′gh

= fgh′′ + 2fg′h′ + 2f ′gh′ + +fg′′h+ 2f ′g′h+ f ′′gh
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Here, it becomes necessary to change the given function, U (ρ) by multiplying through by a factor ρ, so we get ρU(ρ) =
e−p/2ρl+1L(ρ). Doing this, we get:

0 =
(
∂2

∂ρ2
− l (l + 1)

ρ2
+
n

ρ
− 1

4

)
ρU (ρ)

0 =
∂2

∂ρ2
ρU (ρ)− l (l + 1)

ρ2
ρU (ρ) +

n

ρ
ρU (ρ)− 1

4
ρU (ρ)

0 =
∂2

∂ρ2
ρU (ρ)− l (l + 1)

ρ2
e−ρ/2ρl+1L (ρ) +

n

ρ
e−ρ/2ρl+1L (ρ)− 1

4
e−ρ/2ρl+1L (ρ)

0 =
∂2

∂ρ2
ρU (ρ)− l (l + 1)

ρ2
e−ρ/2ρl+1L (ρ) +

n

ρ
e−ρ/2ρl+1L (ρ)− 1

4
e−ρ/2ρl+1L (ρ)

Now, using the triple product rule from above, we can calculate the second derivative. But first, we find f ′, g′, h′, f ′′, g′′, h′′,
with f (ρ) = e−ρ/2, g (ρ) = ρl+1, h (ρ) = L (ρ):

f ′ = −1
2
e−ρ/2

g′ = (l + 1) ρl

h′ = L′ (ρ)

f ′′ =
1
4
e−ρ/2

g′′ = l (l + 1) ρl−1

h′′ = L′′ (ρ)

So, substituting these into the second derivative formula, we get:

(fgh)′′ =
1
4
e−ρ/2ρl+1L (ρ) + e−ρ/2l (l + 1) ρl−1L (ρ) + e−ρ/2ρl+1L′′ (ρ)

−2
1
2
e−ρ/2 (l + 1) ρlL (ρ)− 2

1
2
e−ρ/2ρl+1L′ (ρ) + 2e−ρ/2 (l + 1) ρlL′ (ρ)

Then, substituting this into the results from part (d), we get:

0 =
1
4
e−ρ/2ρl+1L (ρ) + e−ρ/2l (l + 1) ρl−1L (ρ) + e−ρ/2ρl+1L′′ (ρ)

−2
1
2
e−ρ/2 (l + 1) ρlL (ρ)− 2

1
2
e−ρ/2ρl+1L′ (ρ) + 2e−ρ/2 (l + 1) ρlL′ (ρ)

− l (l + 1)
ρ2

e−ρ/2ρl+1L (ρ) +
n

ρ
e−ρ/2ρl+1L (ρ)− 1

4
e−ρ/2ρl+1L (ρ)

=
1
4
ρl+1L (ρ) + l (l + 1) ρl−1L (ρ) + ρl+1L′′ (ρ)− (l + 1) ρlL (ρ)− ρl+1L′ (ρ) + 2 (l + 1) ρlL′ (ρ)

− l (l + 1)
ρ2

ρl+1L (ρ) +
n

ρ
ρl+1L (ρ)− 1

4
ρl+1L (ρ)

=
1
4
ρ1L (ρ) + l (l + 1) ρ−1L (ρ) + ρ1L′′ (ρ)− (l + 1)L (ρ)− ρ1L′ (ρ) + 2 (l + 1)L′ (ρ)

− l (l + 1)
ρ2

ρ1L (ρ) +
n

ρ
ρ1L (ρ)− 1

4
ρ1L (ρ)

= l (l + 1) ρ−1L (ρ) + ρL′′ (ρ)− (l + 1)L (ρ)− ρL′ (ρ) + 2 (l + 1)L′ (ρ)

−l (l + 1) ρ−1L (ρ) +
n

ρ
ρL (ρ)

= ρL′′ (ρ)− (l + 1)L (ρ)− ρL′ (ρ) + 2 (l + 1)L′ (ρ) + nL (ρ)
= ρL′′ (ρ) + 2 (l + 1)L′ (ρ)− ρL′ (ρ) + nL (ρ)− (l + 1)L (ρ)
= ρL′′ (ρ) + (2l + 2− ρ)L′ (ρ) + (n− l + 1)L (ρ)
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ρL′′ + (2l + 2− ρ)L′ + (n− l − 1)L = 0

Part f

Using the values of L(α)
κ from http://mathworld.wolfram.com/LaguerrePolynomial.html, Eqs. 32-35, substitute

back to find the radial wave functions Rnl(r) for n = 1, 2, and 3. Compare your answers with table 7-2 in the text.
What is the physical significance of κ?

Equations 32 through 35 L(α)
κ are:

L
(α)
0 (x) = 1

L
(α)
1 (x) = −x+ α+ 1

L
(α)
2 (x) =

1
2
[
x2 − 2 (α+ 2)x+ (α+ 1) (α+ 2)

]
Now we can substitute these back into Uκ(ρ) = e−p/2ρlL

(α)
κ (ρ), using ρ = 2r

rn
and rn = na0

Z = na0:

U0(ρ) = e−p/2ρl (1)
U1(ρ) = e−p/2ρl (−ρ+ α+ 1)

U2(ρ) = e−p/2ρl
(

1
2
[
ρ2 − 2 (α+ 2) ρ+ (α+ 1) (α+ 2)

])

U0(
2r
na0

) = e−
2r

2na0

(
2r
na0

)l
U1(

2r
na0

) = e−
2r

2na0

(
2r
na0

)l(
− 2r
na0

+ α+ 1
)

U2(
2r
na0

) = e−
2r

2na0

(
2r
na0

)l(1
2

[(
2r
na0

)2

− 2 (α+ 2)
(

2r
na0

)
+ (α+ 1) (α+ 2)

])

For n = 1, l = 0 (with α = 2l + 1 = 1, and κ = n− l − 1 = 0), we get:

U0(
2r
na0

) = e−
2r

2na0

(
2r
na0

)l
U0(

2r
a0

) = e−
2r
2a0

U0(
2r
a0

) = e−
r

a0

For n = 2, l = 0 (with α = 2l + 1 = 1, and κ = n− l − 1 = 1), we get:

U1(
2r
na0

) = e−
2r

2na0

(
2r
na0

)l(
− 2r
na0

+ α+ 1
)

U1(
r

a0
) = e−

2r
4a0

(
− 2r

2a0
+ 1 + 1

)
U1(

r

a0
) = e−

r
2a0

(
2− r

a0

)
U1(

r

a0
) = 2e−

r
2a0

(
1− r

2a0

)
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For n = 3, l = 0 (with α = 2l + 1 = 1, and κ = n− l − 1 = 2), we get:

U2(
2r
na0

) = e−
2r

2na0

(
2r
na0

)l(1
2

[(
2r
na0

)2

− 2 (α+ 2)
(

2r
na0

)
+ (α+ 1) (α+ 2)

])

U2(
2r
3a0

) = e−
2r
6a0

(
1
2

[(
2r
3a0

)2

− 2 (1 + 2)
(

2r
3a0

)
+ (1 + 1) (1 + 2)

])

U2(
2r
3a0

) = e−
r

3a0

(
1
2

[
4r2

9a2
0

− 6
(

2r
3a0

)
+ 6
])

U2(
2r
3a0

) = 3e−
r

3a0

(
1− 2r

3a0
+

2r2

27a2
0

)
Next, we do n = 2, l = 1 (with α = 2l + 1 = 3, and κ = n− l − 1 = 0), and we get:

U0(
2r
na0

) = e−
2r

2na0

(
2r
na0

)l
U0(

r

a0
) = e−

2r
2a0

(
2r
2a0

)
U0(

r

a0
) = e−

r
a0

r

a0

Next, we do n = 3, l = 1 (with α = 2l + 1 = 3, and κ = n− l − 1 = 1), and we get:

U1(
2r
na0

) = e−
2r

2na0

(
2r
na0

)l(
− 2r
na0

+ α+ 1
)

U1(
2r
3a0

) = e−
2r
6a0

(
2r
3a0

)(
− 2r

3a0
+ 3 + 1

)
U1(

2r
3a0

) = e−
r

3a0

(
2
3

)(
r

a0

)(
4− 2r

3a0

)
U1(

2r
3a0

) = e−
r

3a0

(
8
3

)(
r

a0

)(
1− r

6a0

)
Finally, we do n = 3, l = 2 (with α = 2l + 1 = 5, and κ = n− l − 1 = 0), and we get:

U0(
2r
na0

) = e−
2r

2na0

(
2r
na0

)l
U0(

2r
3a0

) = e−
2r
6a0

(
2r
3a0

)2

U0(
2r
3a0

) = e−
r

3a0

(
4
9

)(
r2

a2
0

)
After looking at many pictures, it appears as though κ corresponds to the number of radial lobes (plus one) in the probability
distribution for the electron orbitals.

Part g

Show that the ground-state wave function is normalized:ˆ
d3r |ψ100(r, θ, φ)|2 = 1
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We know that ψ100 (r, θ, φ) = CnlmR21 (r)Y00 (θ, φ) [Tipler & Llewellyn, p. 7-30]. We know that R21 (r) = 2√
a3
0

e−r/a0 and

Y00 (θ, φ) =
√

1
4πUsing the integral above, and substituting the spherical Jacobian for d3r, we get:

ˆ
d3r |ψ100(r, θ, φ)|2 = 1

ˆ ∞
0

ˆ π

0

ˆ 2π

0

|CnlmR21 (r)Y00 (θ, φ)|2 r2 sin θ dφdθdr = 1

ˆ ∞
0

ˆ π

0

ˆ 2π

0

∣∣∣∣∣Cnlm 2√
a3
0

e−r/a0

√
1

4π

∣∣∣∣∣
2

r2 sin θ dφdθdr = 1

ˆ ∞
0

∣∣∣∣∣Cnlm 2√
a3
0

e−r/a0

√
1

4π

∣∣∣∣∣
2

r2dr

ˆ π

0

sin θ dθ
ˆ 2π

0

dφ = 1

2π
ˆ ∞

0

∣∣∣∣∣Cnlm 2√
a3
0

e−r/a0

√
1

4π

∣∣∣∣∣
2

r2dr

ˆ π

0

sin θ dθ = 1

2π
(
− cos θ

∣∣∣∣π
0

)ˆ ∞
0

∣∣∣∣∣Cnlm 2√
a3
0

e−r/a0

√
1

4π

∣∣∣∣∣
2

r2dr = 1

4π
ˆ ∞

0

1
4π

4
a3
0

C2
nlme

−2r/a0r2dr = 1

4
a3
0

C2
nlm

ˆ ∞
0

e−2r/a0r2dr = 1

4
a3
0

C2
nlm

(
−a0

2
e−2r/a0r2

∣∣∣∣∞
0

+a0

ˆ ∞
0

e−2r/a0rdr

)
= 1

4
a3
0

C2
nlm

(
−a0

2
e−2r/a0r2

∣∣∣∣∞
0

+a0

(
−a0

2
e−2r/a0r

∣∣∣∣∞
0

+
a0

2

ˆ ∞
0

e−2r/a0dr

))
= 1

4
a3
0

C2
nlm

(
−a0

2
e−2r/a0r2 + a0

(
−a0

2
e−2r/a0r − a2

0

4
e−2r/a0

)) ∣∣∣∣∞
0

= 1

4
a3
0

C2
nlme

−2r/a0

(
−a0

2
r2 + a0

(
−a0

2
r − a2

0

4

)) ∣∣∣∣∞
0

= 1

4
a3
0

C2
nlme

−2r/a0

(
−a0

2
r2 − a2

0

2
r − a3

0

4

) ∣∣∣∣∞
0

= 1

C2
nlme

−2r/a0

(
− 2
a2
0

r2 − 2
a0
r − 1

) ∣∣∣∣∞
0

= 1

e−2r/a0

(
− 2
a2
0

r2 − 2
a0
r − 1

) ∣∣∣∣∞
0

=
1

C2
nlm

e−2∞/a0

(
− 2
a2
0

∞2 − 2
a0
∞− 1

)
− e−20/a0

(
− 2
a2
0

02 − 2
a0

0− 1
)

=
1

C2
nlm

e−2∞/a0

(
− 2
a2
0

∞2 − 2
a0
∞− 1

)
+ 1 =

1
C2
nlm

e−2∞/a0

(
− 2
a2
0

∞2 − 2
a0
∞− 1

)
=

1
C2
nlm

− 1

But, by L’Hopital’s rule, we know that e−2∞/a0

(
− 2
a2
0
∞2 − 2

a0
∞− 1

)
= 0, so we have that:

0 =
1

C2
nlm

− 1
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But, this is only true if C2
nlm = 1, which tells us that ψ (r, θ, φ) was already normalized.

Problem 7.26

Show that an electron in the n = 2, l = 1 state of hydrogen is most likely to be found at r = 4a0.

Generally, ψnlm is defined by ψnlm (r, θ, φ) = CnlmRnl (r) Θlm (θ) Φm (φ) = CnlmRnl (r)Ylm (θ, φ). We also know that:
ˆ
ψ∗ψdτ = 1

ˆ ∞
0

ˆ π

0

ˆ 2π

0

ψ∗ψr2 sin θ dφdθdr = 1

And, we know that

R21 (r) =
1

2
√

6a3
0

r

a0
e−r/2ao

Y10 (θ, φ) =

√
3

4π
cos θ

Y1±1 (θ, φ) = ±
√

3
8π

sin θ e±iφ

If we recognize that R21 (r) does not depend at all upon either θ or φ, and that neither Y10 (θ, φ) nor Y1±1 (θ, φ) depend on r, we
can rewrite the integral from above:

ˆ ∞
0

ˆ π

0

ˆ 2π

0

ψ∗ψr2 sin θ dφdθdr = 1
ˆ ∞

0

ˆ π

0

ˆ 2π

0

C∗21mR
∗
21Y

∗
1mCnlmR21Y1mr

2 sin θ dφdθdr = 1
ˆ ∞

0

ˆ π

0

ˆ 2π

0

C∗21mC21mR
2
21Y

∗
1mY1mr

2 sin θ dφdθdr = 1

C∗21mC21m

ˆ ∞
0

R2
21r

2dr

ˆ π

0

ˆ 2π

0

Y ∗1mY1m sin θ dφdθ = 1

Strictly speaking, the next two steps are not required. Y (θ, φ) will only scale the value of the function at r = 4a0, but it will not
change that r = 4a0 is where the maximal occurs. However, since it is instructive to see these integrals, and since the work has
already been done, they are included. We can now find

´ π
0

´ 2π

0
Y ∗1mY1m sin θ dφdθ for both m = 0 and m = ±1. For m = 0, we

have:
ˆ π

0

ˆ 2π

0

Y ∗10Y10 sin θ dφdθ =
ˆ π

0

ˆ 2π

0

Y 2
10 sin θ dφdθ

=
ˆ π

0

ˆ 2π

0

(√
3

4π
cos θ

)2

sin θ dφdθ

=
ˆ π

0

ˆ 2π

0

3
4π

cos2 θ sin θ dφdθ

=
3

4π

ˆ π

0

ˆ 2π

0

cos2 θ sin θ dφdθ

=
3

4π

ˆ π

0

cos2 θ sin θ dθ
ˆ 2π

0

dφ
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=
3

4π
(2π)

ˆ π

0

cos2 θ sin θ dθ

=
3
2

ˆ π

0

cos2 θ sin θ dθ

=
3
2

(
−1

3
cos3 θ

∣∣∣∣π
θ=0

)
=

1
2

(− (−1− 1))

= 1

For m = ±1 we have:
ˆ π

0

ˆ 2π

0

Y ∗1±1Y1±1 sin θ dφdθ =
ˆ π

0

ˆ 2π

0

(
±
√

3
8π

sin θ e−iφ
)(
±
√

3
8π

sin θ eiφ
)

sin θ dφdθ

=
ˆ π

0

ˆ 2π

0

(
±
√

3
8π

sin θ

)2 (
e−iφ

) (
eiφ
)

sin θ dφdθ

=
ˆ π

0

ˆ 2π

0

3
8π

sin3 θ
(
e−iφ+iφ

)
dφdθ

=
3

8π

ˆ π

0

ˆ 2π

0

sin3 θ dφdθ

=
3

8π

ˆ π

0

sin3 θ dθ

ˆ 2π

0

dφ

=
3

8π
(2π)

ˆ π

0

sin3 θ dθ

=
3
4

ˆ π

0

(
1− cos2 θ

)
sin θ dθ

=
3
4

(ˆ π

0

sin θ dθ −
ˆ π

0

cos2 θ sin θ dθ
)

=
3
4

(
− cos θ −

(
−1

3
cos3 θ

)) ∣∣∣∣π
θ=0

=
1
4
(
cos3 θ − 3 cos θ

) ∣∣∣∣π
θ=0

=
1
4
((

cos3 π − 3 cosπ
)
−
(
cos3 0− 3 cos 0

))
=

1
4
(
cos3 π − 3 cosπ − cos3 0 + 3 cos 0

)
=

1
4

(−1− 3 (−1)− 1 + 3 (1))

=
1
4

(−1 + 3− 1 + 3)

= 1

So, we now know that Y1m (θ, φ) = 1. So we’re left with:

C∗21mC21m

ˆ ∞
0

R2
21r

2dr = 1

However, looking ahead, we know that we will be finding where the derivative of some function is zero, and a constant factor will
not change where the derivative is zero, just the magnitude of the function at that point. So, we have

´∞
0
C∗21mC21mR

2
21r

2dr = 1,
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which looks like a probability distribution integration, of the form
´∞
0
P (r) dr = 1. So, let’s let P (r) dr = C∗21mC21mR

2
21r

2dr,
so P (r) = C∗21mC21mR

2
21r

2, and the maximum probability will occur at dP
dr = 0. This is:

d

dr
P (r) = 0

d

dr

(
C∗21mC21mR

2
21r

2
)

= 0

C∗21mC21m
d

dr

( 1
2
√

6a3
0

r

a0
e−r/2ao

)2

r2

 = 0

C∗21mC21m
d

dr

( 1
2a0

√
6a3

0

)2

r2e−r/aor2

 = 0

C∗21mC21m

(
1

2a0

√
6a3

0

)2
d

dr

(
r4e−r/ao

)
= 0

C∗21mC21m

(
1

2a0

√
6a3

0

)2(
r4
(
− 1
a0

)
e−r/a0 + 4r3e−r/a0

)
= 0

C∗21mC21m

(
1

2a0

√
6a3

0

)2

r3e−r/a0

(
− r

a0
+ 4
)

= 0

Since e−r/a0 is never zero, and since r = 0 is impossible because l = 1 so the electron must have angular momentum which would
not happen at r = 0, we have:

− r

a0
+ 4 = 0

− r

a0
= −4

r = −4 (−a0)
r = 4a0

Problem 7.29

If a classical system does not have a constant charge-to-mass ratio throughout the system, the magnetic moment can
be written

µ = g
Q

2M
L

where Q is the total charge, M is the total mass, and g 6= 1.

Part a

Show that g = 2 for a solid cylinder (I = 1
2MR2) that spins about its axis and has a uniform charge on its cylindrical

surface.

We know that µ = iA. We also know, in this case, that the area of the loop about which the charge is circulating is A = πR2.
To find i, we must recognize that current is equal to charge times the frequency, or i = Qf , that f = ω

2π , and that L = Iω. This
gives us:

µ = iA
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= QfπR2

= Q
ω

2π
πR2

= Q
1
2

(
L

I

)
R2

= Q
1
2

(
L

1
2MR2

)
R2

= Q

(
L

M

)
= 2

Q

2M
L

So, g = 2.

Part b

Show that g = 2.5 for a solid sphere (I = 2MR2/5) that has a ring of charge on the surface at the equator, as shown
in Figure 7-33 [Tipler & Llewellyn, p. 309].

In this case, practically everything is identical to part (a) except for the moment of inertia. So we have:

µ = iA

= QfπR2

= Q
ω

2π
πR2

= Q
1
2

(
L

I

)
R2

= Q
1
2

(
L

2
5MR2

)
R2

=
5
4
Q

(
L

M

)
=

5
2
· Q

2M
L

So, g = 5
2 = 2.5.

Problem 7.39

Consider a system of two electrons, each with l = 1 and s = 1
2 .

Part a

What are the possible values of the quantum number for the total orbital angular momentum ~L = ~L1 + ~L2?

The quantum number, L, for ~L has possible values l1 + l2, l1 + l2 − 1, . . . , |l1 − l2|, where l1 and l2 are the total orbital angular
momentum quantum numbers for ~L1 and ~L2 respectively. These are both 1, so, we have that L = 2, L = 1, or L = 0.
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Part b

What are the possible values of the quantum number S for the total spin ~S = ~S1 + ~S2?

Similarly to the above, we have quantum numbers, s1 and s2 equal to 1
2 , so we have the total spin quantum number as S = 1 or

S = 0.

Part c

Using the results of parts (a) and (b), find the possible quantum numbers j for the combination ~J = ~L+ ~S.

The possible quantum numbers for j can be either j = L + S or j = |L− S|. Since we have multiple possibilities for L and S,
we try each combination to find all possible quantum numbers. So, for j we have: 2 + 1 = 3, 2 − 1 = 1, 2 + 0 = 2, 2 − 0 = 2,
1 + 1 = 2, 1− 1 = 0, 1 + 0 = 1, 1− 0 = 0, 0 + 1 = 1, |0− 1| = 1, 0 + 0 = 0, 0− 0 = 0. So, j can equal: 3, 2, 1, or 0.

Part d

What are the possible quantum numbers j1 and j2 for the total angular momentum of each particle?

Since l1 = l2 = 1 and s1 = s2 = 1
2 , both j1 and j2 have the same possible quantum numbers. These are given, as in part (c), by

j1 = l1 + s1 or j1 = |l1 − s1|. So, we get the possible quantum numbers for j1 = j2 to be 1.5 or 0.5.

Part e

Use the results of part (d) to calculate the possible values of j from the combinations of j1 and j2. Are these the same
as in part (c)?

We know that that the quantum number, j, for ~J has possible values j1 + j2, j1 + j2 − 1, . . . , |j1 − j2|, So, using the results from
part (d), we see that the possible values for j are the integers between 1.5 + 1.5 = 3 and 1.5− 1.5 = 0, or between 1.5 + 0.5 = 2
and 1.5− 0.5 = 1, or between 0.5 + 1.5 = 2 and |0.5− 1.5| = 1, or between 0.5 + 0.5 = 1 and 0.5− 0.5 = 0. So, all the possible
values are: 3, 2, 1, and 0. This is the same as in part (c).

Problem 7.44

Write the electron configuration of the following elements:

Part a

Carbon

Carbon has Z = 6, so its electron configuration is 1s22s22p2.

Part b

Oxygen

Oxygen has Z = 8, so its electron configuration is 1s22s22p4.
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Part c

Argon

Argon has Z = 18, so its electron configuration is 1s22s22p63s23p6.

Problem 7.73

In the anomalous Zeeman effect, the external magnetic field is much weaker than the internal field seen by the electron
as a result of its orbital motion. In the vector model (Figure 7-30 [www.whfreeman.com/tiplermodernphysics5e]) the
vectors ~L and ~S precess rapidly around ~J because of the internal field and ~J precesses slowly around the external field.
The energy splitting is found by first calculating the component of the magnetic moment µJ in the direction of ~J and
then finding the component of ~µz in the direction of ~B.

Part a

Show that µJ = ~µ· ~J
J can be written

µJ = −µB
~J

(
L2 + 2S2 + 3~S · ~L

)
We can substitute ~µ = −gLµB

~L
~ + −gSµB

~S
~ = −µB

~

(
gL~L+ gS ~S

)
, where gL = 1 and gS ≈ 2 ([Tipler & Llewellyn, p. 287]), and

~J = ~L+ ~S, and we get:

µJ =
~µ · ~J
J

=

(
−µB(~L+2~S)

~

)
·
(
~L+ ~S

)
J

=

(−µB

~
) ((

~L+ 2~S
)
·
(
~L+ ~S

))
J

=
−µB
~J

((
~L+ 2~S

)
·
(
~L+ ~S

))
=
−µB
~J

(
~L ·
(
~L+ ~S

)
+ 2~S ·

(
~L+ ~S

))
=
−µB
~J

((
~L · ~L+ ~L · ~S

)
+
(

2~S · ~L+ 2~S · ~S
))

=
−µB
~J

(
L2 + ~L · ~S + 2~L · ~S + 2S2

)
= −µB

~J

(
L2 + 2S2 + 3~L · ~S

)

Part b

From J2 =
(
~L+ ~S

)
·
(
~L+ ~S

)
show that ~S · ~L = 1

2

(
J2 − L2 − S2

)
.

This is, easily:

J2 =
(
~L+ ~S

)
·
(
~L+ ~S

)
J2 =

(
~L ·
(
~L+ ~S

)
+ ~S ·

(
~L+ ~S

))
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J2 = ~L · ~L+ ~L · ~S + ~S · ~L+ ~S · ~S
J2 = ~L · ~L+ ~S · ~L+ ~S · ~L+ ~S · ~S
J2 = L2 + 2~S · ~L+ S2

1
2
(
J2 − L2 − S2

)
= ~S · ~L

Part c

Substitute your result in part (b) into that of part (a) to obtain

µJ = − µB
2~J

(
3J2 + S2 − L2

)
This becomes:

µJ = −µB
~J

(
L2 + 2S2 + 3~L · ~S

)
= −µB

~J

(
L2 + 2S2 + 3

1
2
(
J2 − L2 − S2

))
= − µB

2~J
(
2L2 + 4S2 + 3J2 − 3L2 − 3S2

)
= − µB

2~J
(
3J2 − L2 + S2

)
Part d

Multiply your result by Jz/J to obtain

µz = −µB
(

1 +
J2 + S2 − L2

2J2

)
Jz
~

This becomes:

− µB
2~J

(
3J2 − L2 + S2

)(Jz
J

)
= −µBJz

2~J2

(
3J2 − L2 + S2

)
= −µBJz

~

(
3J2 − L2 + S2

2J2

)
= −µB

(
2J2

2J2
+
J2 − L2 + S2

2J2

)
Jz
~

= −µB
(

1 +
J2 − L2 + S2

2J2

)
Jz
~
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