Problem 1

[35 pts] Hydrogen radial wavefunctions: the hydrogen potential is $V(r)=-Z k_{e} e^{2} / r$.

Part a

Using the Lapacian ∇^{2} in spherical coordinates, show that

$$
\hat{T}=\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{\hat{L}^{2}}{2 \mu r^{2}}
$$

where the second term represents rotational kinetic energy, with

$$
\hat{L}^{2}=-\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)
$$

Write Schrödinger's equation for $\psi(r, \theta, \phi)$ of the hydrogen atom using this form of \hat{T}.

Similar to problem (2) part (a) in homework set \#6, we start with the multi-dimensional time-independent Schrödinger's equation and substitute in the Lapacian in spherical coordinates:

$$
\begin{aligned}
\hat{H} \psi & =E \psi \\
\hat{T} \psi+\hat{V} \psi & =E \psi \\
-\frac{\hbar^{2}}{2 \mu} \nabla^{2} \psi+\hat{V} \psi & =E \psi \\
-\frac{\hbar^{2}}{2 \mu}\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]\right) \psi+\hat{V} \psi & =E \psi
\end{aligned}
$$

So now we must show that $\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)=\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r$, so:

$$
\begin{aligned}
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right) & =\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r \\
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right) f(r) & =\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r f(r) \\
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right) f(r) & =\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{\partial}{\partial r} r f(r)\right) \\
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right) f(r) & =\frac{1}{r} \frac{\partial}{\partial r}\left(r f^{\prime}(r)+f(r)\right) \\
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right) f(r) & =\frac{1}{r}\left(r f^{\prime \prime}(r)+f^{\prime}(r)+f^{\prime}(r)\right) \\
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}\right) f(r) & =f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r) \\
\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r} & =\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}
\end{aligned}
$$

So, we can replace $\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)$ with $\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r$.

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 \mu}\left(\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{1}{r^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]\right) \psi+\hat{V} \psi & =E \psi \\
\left(\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{-\hbar^{2}}{2 \mu r^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]\right) \psi+\hat{V} \psi & =E \psi
\end{aligned}
$$

If $\hat{L}^{2}=-\hbar^{2}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right)$, then we have:

$$
\begin{aligned}
\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{\hat{L}^{2}}{2 \mu r^{2}} \psi+\hat{V} \psi & =E \psi \\
\hat{T} \psi+\hat{V} \psi & =E \psi
\end{aligned}
$$

Schrödinger's equation is, then:

$$
\left(\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{\hat{L}^{2}}{2 \mu r^{2}}\right) \psi(r, \theta, \phi)+\hat{V} \psi(r, \theta, \phi)=E \psi(r, \theta, \phi)
$$

But $\hat{V}=V(r)=-Z k_{e} e^{2} / r$, so

$$
\left(\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{\hat{L}^{2}}{2 \mu r^{2}}\right) \psi(r, \theta, \phi)-\frac{Z k_{e} e^{2}}{r} \psi(r, \theta, \phi)=E \psi(r, \theta, \phi)
$$

Part b

Make the substitution $\psi(r, \theta, \phi)=\frac{1}{r} u(r) Y_{l m}(\theta, \phi)$. The factor $\frac{1}{r}$ takes into account the spreading out of the wave function as it gets farther from the origin. Use the eigenvalue of $Y_{l m}$,

$$
\hat{L}^{2} Y_{l m}=\hbar^{2} l(l+1) Y_{l m}
$$

to simplify the equation.

We start with:

$$
\left(\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{\hat{L}^{2}}{2 \mu r^{2}}\right) \psi(r, \theta, \phi)-\frac{Z k_{e} e^{2}}{r} \psi(r, \theta, \phi)=E \psi(r, \theta, \phi)
$$

Substituting in $\psi(r, \theta, \phi)=\frac{1}{r} u(r) Y_{l m}(\theta, \phi)$, we get:

$$
\begin{aligned}
E \frac{1}{r} u(r) Y_{l m}(\theta, \phi) & =\left(\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r+\frac{\hat{L}^{2}}{2 \mu r^{2}}\right) \frac{1}{r} u(r) Y_{l m}(\theta, \phi)-\frac{Z k_{e} e^{2}}{r} \frac{1}{r} u(r) Y_{l m}(\theta, \phi) \\
& =\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} Y_{l m}(\theta, \phi) \frac{\partial^{2}}{\partial r^{2}} \frac{r}{r} u(r)+\frac{u(r)}{2 \mu r^{3}} \hat{L}^{2} Y_{l m}(\theta, \phi)-\frac{Z k_{e} e^{2}}{r} \frac{1}{r} u(r) Y_{l m}(\theta, \phi) \\
& =\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} Y_{l m}(\theta, \phi) \frac{\partial^{2}}{\partial r^{2}} u(r)+\frac{u(r)}{2 \mu r^{3}} \hbar^{2} l(l+1) Y_{l m}(\theta, \phi)-\frac{Z k_{e} e^{2}}{r} \frac{1}{r} u(r) Y_{l m}(\theta, \phi) \\
E \frac{1}{r} u(r) & =\frac{-\hbar^{2}}{2 \mu} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} u(r)+\frac{u(r)}{2 \mu r^{3}} \hbar^{2} l(l+1)-\frac{Z k_{e} e^{2}}{r} \frac{1}{r} u(r) \\
E u(r) & =\frac{-\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial r^{2}} u(r)+\frac{u(r)}{2 \mu r^{2}} \hbar^{2} l(l+1)-\frac{Z k_{e} e^{2}}{r} u(r)
\end{aligned}
$$

Part c

Show that the result looks like the Schrödinger equation for $u(r)$ in one dimension with a centrifugal potential $V_{c}(r)=$ $\hbar^{2} l(l+1) / 2 \mu r^{2}$ in addition to the Colomb potential. Compare with the potential of the centrifugal force $F=m a_{c}=$ $m v^{2} / r$ using $L=m v r$.

If $V_{c}(r)=\hbar^{2} l(l+1) / 2 \mu r^{2}$, then we can replace $\hbar^{2} l(l+1) / 2 \mu r^{2}$:

$$
E u(r)=\frac{-\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial r^{2}} u(r)+V_{c}(r) u(r)-\frac{Z k_{e} e^{2}}{r} u(r)
$$

If $V_{c}(r)=\hbar^{2} l(l+1) / 2 \mu r^{2}$, then we should be able to find $F=-\frac{d}{d r}\left(\hbar^{2} l(l+1) / 2 \mu r^{2}\right)$. So:

$$
\begin{aligned}
& F=-\frac{d}{d r}\left(\frac{\hbar^{2} l(l+1)}{2 \mu r^{2}}\right) \\
& F=-\frac{\hbar^{2} l(l+1)}{2 \mu} \frac{d}{d r}\left(r^{-2}\right) \\
& F=-\frac{\hbar^{2} l(l+1)}{2 \mu}-2 r^{-3} \\
& F=\frac{\hbar^{2} l(l+1)}{\mu} r^{-3} \\
& F=\frac{L^{2}}{\mu r^{3}} \\
& F=\frac{(\mu v r)^{2}}{\mu r^{3}} \\
& F=\frac{\mu v^{2}}{r}
\end{aligned}
$$

So, we can see that the derivative of $V_{c}(r)$ gives us an apparent centrifugal force.

Part d

Make the substitutions

$$
\begin{aligned}
u(r) & =U(\rho) \text { where } \rho=\frac{2 r}{r_{n}} \\
r_{n} & =\frac{n a_{0}}{Z} \text { where } a_{0}=\frac{\hbar^{2}}{\mu k_{e} e^{2}} \\
E_{n} & =\frac{-Z^{2} E_{0}}{n^{2}} \text { where } E_{0}=\frac{\mu k_{e}^{2} e^{4}}{2 \hbar^{2}}
\end{aligned}
$$

to obtain the dimensionless equation

$$
\left(\frac{\partial^{2}}{\partial \rho^{2}}-\frac{l(l+1)}{\rho^{2}}+\frac{n}{\rho}-\frac{1}{4}\right) U(\rho)=0
$$

Starting with:

$$
E u(r)=\frac{-\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial r^{2}} u(r)+\frac{u(r)}{2 \mu r^{2}} \hbar^{2} l(l+1)-\frac{Z k_{e} e^{2}}{r} u(r)
$$

and substituting in $u(r)=U(\rho)$, where $\rho=\frac{2 r}{r_{n}}$, and recognizing that $r=\rho r_{n} / 2$, we get:

$$
\begin{aligned}
E U(\rho) & =\frac{-\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial r^{2}} U(\rho)+\frac{U(\rho)}{2 \mu r^{2}} \hbar^{2} l(l+1)-\frac{Z k_{e} e^{2}}{r} U(\rho) \\
& =\frac{-\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial r^{2}} U(\rho)+\frac{U(\rho)}{2 \mu\left(\frac{\rho r_{n}}{2}\right)^{2}} \hbar^{2} l(l+1)-\frac{2 Z k_{e} e^{2}}{\rho r_{n}} U(\rho)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial r^{2}} U(\rho)+\frac{U(\rho)}{2 \mu\left(\frac{\rho r_{n}}{2}\right)^{2}} \hbar^{2} l(l+1)-\frac{2 Z k_{e} e^{2}}{\rho r_{n}} U(\rho) \\
& =\frac{-\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial r^{2}} U(\rho)+\frac{2 U(\rho)}{\mu\left(\rho r_{n}\right)^{2}} \hbar^{2} l(l+1)-\frac{2 Z k_{e} e^{2}}{\rho r_{n}} U(\rho)
\end{aligned}
$$

We also have that $\frac{\partial \rho}{\partial r} \frac{\partial}{\partial \rho}=\frac{\partial}{\partial r}$, and that

$$
\frac{\partial^{2}}{\partial r^{2}}=\frac{\partial}{\partial r}\left(\frac{\partial \rho}{\partial r} \frac{\partial}{\partial \rho}\right)
$$

But, we know that $\frac{\partial \rho}{\partial r}=\frac{\partial}{\partial r}\left(\frac{2 r}{r_{n}}\right)=\frac{2}{r_{n}}$, so this becomes:

$$
\begin{aligned}
\frac{\partial^{2}}{\partial r^{2}} & =\frac{\partial}{\partial r}\left(\frac{2}{r_{n}} \frac{\partial}{\partial \rho}\right) \\
& =\frac{2}{r_{n}} \frac{\partial}{\partial r}\left(\frac{\partial}{\partial \rho}\right) \\
& =\frac{2}{r_{n}}\left(\frac{\partial \rho}{\partial r} \frac{\partial}{\partial \rho}\right)\left(\frac{\partial}{\partial \rho}\right) \\
& =\left(\frac{2}{r_{n}}\right)^{2} \frac{\partial^{2}}{\partial \rho^{2}} \\
& =\frac{4}{r_{n}^{2}} \frac{\partial^{2}}{\partial \rho^{2}}
\end{aligned}
$$

So, substituting this in, we get:

$$
\begin{aligned}
E U(\rho) & =\frac{-\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial r^{2}} U(\rho)+\frac{2 U(\rho)}{\mu\left(\rho r_{n}\right)^{2}} \hbar^{2} l(l+1)-\frac{2 Z k_{e} e^{2}}{\rho r_{n}} U(\rho) \\
& =\frac{-\hbar^{2}}{2 \mu} \frac{4}{r_{n}^{2}} \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)+\frac{2 U(\rho)}{\mu\left(\rho r_{n}\right)^{2}} \hbar^{2} l(l+1)-\frac{2 Z k_{e} e^{2}}{\rho r_{n}} U(\rho)
\end{aligned}
$$

Now, since $r_{n}=\frac{n a_{0}}{Z}, a_{0}=\frac{\hbar^{2}}{\mu k_{e} e^{2}}, E_{n}=\frac{-Z^{2} E_{0}}{n^{2}}$, and $E_{0}=\frac{\mu k_{e}^{2} e^{4}}{2 \hbar^{2}}$.

$$
\begin{aligned}
E U(\rho) & =\frac{-\hbar^{2}}{2 \mu} \frac{4}{r_{n}^{2}} \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)+\frac{2 U(\rho)}{\mu\left(\rho r_{n}\right)^{2}} \hbar^{2} l(l+1)-\frac{2 Z k_{e} e^{2}}{\rho r_{n}} U(\rho) \\
& =\frac{-\hbar^{2}}{2 \mu} \frac{4}{\left(\frac{n a_{0}}{Z}\right)^{2}} \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)+\frac{2 U(\rho)}{\mu\left(\rho \frac{n a_{0}}{Z}\right)^{2}} \hbar^{2} l(l+1)-\frac{2 Z k_{e} e^{2}}{\rho \frac{n a_{0}}{Z}} U(\rho) \\
& =\frac{-\hbar^{2}}{2 \mu} \frac{Z^{2} 4}{\left(n a_{0}\right)^{2}} \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)+\frac{2 Z U(\rho)}{\mu\left(\rho n a_{0}\right)^{2}} \hbar^{2} l(l+1)-\frac{2 Z^{2} k_{e} e^{2}}{\rho n a_{0}} U(\rho) \\
& =\frac{-\hbar^{2}}{2 \mu} \frac{Z^{2} 4}{\left(n \frac{\hbar^{2}}{\mu k_{e} e^{2}}\right)^{2}} \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)+\frac{2 Z^{2} U(\rho)}{\mu\left(\rho n \frac{\hbar^{2}}{\mu k_{e} e^{2}}\right)^{2}} \hbar^{2} l(l+1)-\frac{2 Z^{2} k_{e} e^{2}}{\rho n \frac{\hbar^{2}}{\mu k_{e} e^{2}}} U(\rho) \\
& =\frac{-\hbar^{2}}{2 \mu} \frac{\left(\mu k_{e} e^{2}\right)^{2} Z^{2}}{\left(n \hbar^{2}\right)^{2}} \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)+\frac{\left(\mu k_{e} e^{2}\right)^{2} 2 Z U(\rho)}{\mu\left(\rho n \hbar^{2}\right)^{2}} \hbar^{2} l(l+1)-\frac{2 \mu e^{2} Z^{2} k_{e}^{2} e^{2}}{\rho n \hbar^{2}} U(\rho) \\
& =\frac{-\hbar^{2}}{2 \mu} \frac{\mu^{2} k_{e}^{2} e^{4} Z^{2} 4}{n^{2} \hbar^{4}} \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)+\frac{\mu^{2} k_{e}^{2} e^{4} 2 Z^{2} U(\rho)}{\mu \rho^{2} n^{2} \hbar^{4}} \hbar^{2} l(l+1)-\frac{2 \mu k_{e}^{2} e^{4} Z^{2}}{\rho n \hbar^{2}} U(\rho) \\
& =\frac{-1}{2} \frac{\mu k_{e}^{2} e^{4} Z^{2} 4}{n^{2} \hbar^{2}} \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)+\frac{\mu k_{e}^{2} e^{4} 4 Z^{2} U(\rho)}{2 \rho^{2} n^{2} \hbar^{2}} l(l+1)-\frac{4 \mu k_{e}^{2} e^{4} Z^{2}}{2 \rho n \hbar^{2}} U(\rho)
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{E_{0} Z^{2} 4}{n^{2}} \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)+\frac{E_{0} Z^{2} 4 U(\rho)}{\rho^{2} n^{2}} l(l+1)-\frac{4 E_{0} Z^{2} n}{\rho n^{2}} U(\rho) \\
& =4 E_{n} \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)-4 E_{n} \frac{U(\rho)}{\rho^{2}} l(l+1)+4 E_{n} \frac{n}{\rho} U(\rho)
\end{aligned}
$$

Here, we know that $E=E_{n}$, so we have E_{n} cancelling:

$$
\begin{aligned}
E_{n} U(\rho) & =4 E_{n} \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)-4 E_{n} \frac{U(\rho)}{\rho^{2}} l(l+1)+4 E_{n} \frac{n}{\rho} U(\rho) \\
U(\rho) & =4 \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)-4 \frac{U(\rho)}{\rho^{2}} l(l+1)+4 \frac{n}{\rho} U(\rho) \\
0 & =4 \frac{\partial^{2}}{\partial \rho^{2}} U(\rho)-4 \frac{U(\rho)}{\rho^{2}} l(l+1)+4 \frac{n}{\rho} U(\rho)-U(\rho) \\
0 & =\frac{\partial^{2}}{\partial \rho^{2}} U(\rho)-\frac{U(\rho)}{\rho^{2}} l(l+1)+\frac{n}{\rho} U(\rho)-\frac{U(\rho)}{4} \\
0 & =\left(\frac{\partial^{2}}{\partial \rho^{2}}-\frac{l(l+1)}{\rho^{2}}+\frac{n}{\rho}-\frac{1}{4}\right) U(\rho)
\end{aligned}
$$

Part e

Use repeated product rules to show that

$$
(f g h)^{\prime \prime}=f^{\prime \prime} g h+f g^{\prime \prime} h+f g h^{\prime \prime}+2 f^{\prime} g^{\prime} h+2 f^{\prime} g h^{\prime}+2 f g^{\prime} h^{\prime}
$$

Use this and the substitution $U(\rho)=e^{-p / 2} \rho^{l} L(\rho)$ to obtain Laguerre's differential equation

$$
\rho L^{\prime \prime}+(2 l+2-\rho) L^{\prime}+(n-l-1) L=0
$$

The solutions are associated Laguerre polynomials $L_{n-l-1}^{(2 l+1)}(\rho)$.
Assuming that these are all functions in x, we get:

$$
\begin{aligned}
\frac{\partial}{\partial x} f g h & =\frac{\partial}{\partial x} f(g h) \\
& =f \frac{\partial}{\partial x} g h+f^{\prime} g h \\
& =f\left(g h^{\prime}+g^{\prime} h\right)+f^{\prime} g h \\
& =f g h^{\prime}+f g^{\prime} h+f^{\prime} g h
\end{aligned}
$$

and:

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x^{2}} f g h & =\frac{\partial}{\partial x}\left(f g h^{\prime}+f g^{\prime} h+f^{\prime} g h\right) \\
& =\frac{\partial}{\partial x} f g h^{\prime}+\frac{\partial}{\partial x} f g^{\prime} h+\frac{\partial}{\partial x} f^{\prime} g h \\
& =\frac{\partial}{\partial x} f\left(g h^{\prime}\right)+\frac{\partial}{\partial x} f\left(g^{\prime} h\right)+\frac{\partial}{\partial x} f^{\prime}(g h) \\
& =f \frac{\partial}{\partial x}\left(g h^{\prime}\right)+f^{\prime}\left(g h^{\prime}\right)+f \frac{\partial}{\partial x}\left(g^{\prime} h\right)+f^{\prime}\left(g^{\prime} h\right)+f^{\prime} \frac{\partial}{\partial x}(g h)+f^{\prime \prime}(g h) \\
& =f\left(g h^{\prime \prime}+g^{\prime} h^{\prime}\right)+f^{\prime} g h^{\prime}+f\left(g^{\prime} h^{\prime}+g^{\prime \prime} h\right)+f^{\prime} g^{\prime} h+f^{\prime}\left(g h^{\prime}+g^{\prime} h\right)+f^{\prime \prime} g h \\
& =f g h^{\prime \prime}+f g^{\prime} h^{\prime}+f^{\prime} g h^{\prime}+f g^{\prime} h^{\prime}+f g^{\prime \prime} h+f^{\prime} g^{\prime} h+f^{\prime} g h^{\prime}+f^{\prime} g^{\prime} h+f^{\prime \prime} g h \\
& =f g h^{\prime \prime}+2 f g^{\prime} h^{\prime}+2 f^{\prime} g h^{\prime}++f g^{\prime \prime} h+2 f^{\prime} g^{\prime} h+f^{\prime \prime} g h
\end{aligned}
$$

Here, it becomes necessary to change the given function, $U(\rho)$ by multiplying through by a factor ρ, so we get $\rho U(\rho)=$ $e^{-p / 2} \rho^{l+1} L(\rho)$. Doing this, we get:

$$
\begin{aligned}
& 0=\left(\frac{\partial^{2}}{\partial \rho^{2}}-\frac{l(l+1)}{\rho^{2}}+\frac{n}{\rho}-\frac{1}{4}\right) \rho U(\rho) \\
& 0=\frac{\partial^{2}}{\partial \rho^{2}} \rho U(\rho)-\frac{l(l+1)}{\rho^{2}} \rho U(\rho)+\frac{n}{\rho} \rho U(\rho)-\frac{1}{4} \rho U(\rho) \\
& 0=\frac{\partial^{2}}{\partial \rho^{2}} \rho U(\rho)-\frac{l(l+1)}{\rho^{2}} e^{-\rho / 2} \rho^{l+1} L(\rho)+\frac{n}{\rho} e^{-\rho / 2} \rho^{l+1} L(\rho)-\frac{1}{4} e^{-\rho / 2} \rho^{l+1} L(\rho) \\
& 0=\frac{\partial^{2}}{\partial \rho^{2}} \rho U(\rho)-\frac{l(l+1)}{\rho^{2}} e^{-\rho / 2} \rho^{l+1} L(\rho)+\frac{n}{\rho} e^{-\rho / 2} \rho^{l+1} L(\rho)-\frac{1}{4} e^{-\rho / 2} \rho^{l+1} L(\rho)
\end{aligned}
$$

Now, using the triple product rule from above, we can calculate the second derivative. But first, we find $f^{\prime}, g^{\prime}, h^{\prime}, f^{\prime \prime}, g^{\prime \prime}, h^{\prime \prime}$, with $f(\rho)=e^{-\rho / 2}, g(\rho)=\rho^{l+1}, h(\rho)=L(\rho)$:

$$
\begin{gathered}
f^{\prime}=-\frac{1}{2} e^{-\rho / 2} \\
g^{\prime}=(l+1) \rho^{l} \\
h^{\prime}=L^{\prime}(\rho) \\
f^{\prime \prime}=\frac{1}{4} e^{-\rho / 2} \\
g^{\prime \prime}=l(l+1) \rho^{l-1} \\
h^{\prime \prime}=L^{\prime \prime}(\rho)
\end{gathered}
$$

So, substituting these into the second derivative formula, we get:

$$
\begin{aligned}
(f g h)^{\prime \prime}= & \frac{1}{4} e^{-\rho / 2} \rho^{l+1} L(\rho)+e^{-\rho / 2} l(l+1) \rho^{l-1} L(\rho)+e^{-\rho / 2} \rho^{l+1} L^{\prime \prime}(\rho) \\
& -2 \frac{1}{2} e^{-\rho / 2}(l+1) \rho^{l} L(\rho)-2 \frac{1}{2} e^{-\rho / 2} \rho^{l+1} L^{\prime}(\rho)+2 e^{-\rho / 2}(l+1) \rho^{l} L^{\prime}(\rho)
\end{aligned}
$$

Then, substituting this into the results from part (d), we get:

$$
\begin{aligned}
0= & \frac{1}{4} e^{-\rho / 2} \rho^{l+1} L(\rho)+e^{-\rho / 2} l(l+1) \rho^{l-1} L(\rho)+e^{-\rho / 2} \rho^{l+1} L^{\prime \prime}(\rho) \\
& -2 \frac{1}{2} e^{-\rho / 2}(l+1) \rho^{l} L(\rho)-2 \frac{1}{2} e^{-\rho / 2} \rho^{l+1} L^{\prime}(\rho)+2 e^{-\rho / 2}(l+1) \rho^{l} L^{\prime}(\rho) \\
& -\frac{l(l+1)}{\rho^{2}} e^{-\rho / 2} \rho^{l+1} L(\rho)+\frac{n}{\rho} e^{-\rho / 2} \rho^{l+1} L(\rho)-\frac{1}{4} e^{-\rho / 2} \rho^{l+1} L(\rho) \\
= & \frac{1}{4} \rho^{l+1} L(\rho)+l(l+1) \rho^{l-1} L(\rho)+\rho^{l+1} L^{\prime \prime}(\rho)-(l+1) \rho^{l} L(\rho)-\rho^{l+1} L^{\prime}(\rho)+2(l+1) \rho^{l} L^{\prime}(\rho) \\
& -\frac{l(l+1)}{\rho^{2}} \rho^{l+1} L(\rho)+\frac{n}{\rho} \rho^{l+1} L(\rho)-\frac{1}{4} \rho^{l+1} L(\rho) \\
= & \frac{1}{4} \rho^{1} L(\rho)+l(l+1) \rho^{-1} L(\rho)+\rho^{1} L^{\prime \prime}(\rho)-(l+1) L(\rho)-\rho^{1} L^{\prime}(\rho)+2(l+1) L^{\prime}(\rho) \\
& -\frac{l(l+1)}{\rho^{2}} \rho^{1} L(\rho)+\frac{n}{\rho} \rho^{1} L(\rho)-\frac{1}{4} \rho^{1} L(\rho) \\
= & l(l+1) \rho^{-1} L(\rho)+\rho L^{\prime \prime}(\rho)-(l+1) L(\rho)-\rho L^{\prime}(\rho)+2(l+1) L^{\prime}(\rho) \\
& -l(l+1) \rho^{-1} L(\rho)+\frac{n}{\rho} \rho L(\rho) \\
= & \rho L^{\prime \prime}(\rho)-(l+1) L(\rho)-\rho L^{\prime}(\rho)+2(l+1) L^{\prime}(\rho)+n L(\rho) \\
= & \rho L^{\prime \prime}(\rho)+2(l+1) L^{\prime}(\rho)-\rho L^{\prime}(\rho)+n L(\rho)-(l+1) L(\rho) \\
= & \rho L^{\prime \prime}(\rho)+(2 l+2-\rho) L^{\prime}(\rho)+(n-l+1) L(\rho)
\end{aligned}
$$

$$
\rho L^{\prime \prime}+(2 l+2-\rho) L^{\prime}+(n-l-1) L=0
$$

Part f

Using the values of $L_{\kappa}^{(\alpha)}$ from http://mathworld.wolfram.com/LaguerrePolynomial.html, Eqs. 32-35, substitute back to find the radial wave functions $R_{n l}(r)$ for $n=1,2$, and 3 . Compare your answers with table 7-2 in the text. What is the physical significance of κ ?

Equations 32 through $35 L_{\kappa}^{(\alpha)}$ are:

$$
\begin{aligned}
L_{0}^{(\alpha)}(x) & =1 \\
L_{1}^{(\alpha)}(x) & =-x+\alpha+1 \\
L_{2}^{(\alpha)}(x) & =\frac{1}{2}\left[x^{2}-2(\alpha+2) x+(\alpha+1)(\alpha+2)\right]
\end{aligned}
$$

Now we can substitute these back into $U_{\kappa}(\rho)=e^{-p / 2} \rho^{l} L_{\kappa}^{(\alpha)}(\rho)$, using $\rho=\frac{2 r}{r_{n}}$ and $r_{n}=\frac{n a_{0}}{Z}=n a_{0}$:

$$
\begin{aligned}
& U_{0}(\rho)=e^{-p / 2} \rho^{l}(1) \\
& U_{1}(\rho)=e^{-p / 2} \rho^{l}(-\rho+\alpha+1) \\
& U_{2}(\rho)=e^{-p / 2} \rho^{l}\left(\frac{1}{2}\left[\rho^{2}-2(\alpha+2) \rho+(\alpha+1)(\alpha+2)\right]\right) \\
& U_{0}\left(\frac{2 r}{n a_{0}}\right)=e^{-\frac{2 r}{2 n a_{0}}}\left(\frac{2 r}{n a_{0}}\right)^{l} \\
& U_{1}\left(\frac{2 r}{n a_{0}}\right)=e^{-\frac{2 r}{2 n a_{0}}}\left(\frac{2 r}{n a_{0}}\right)^{l}\left(-\frac{2 r}{n a_{0}}+\alpha+1\right) \\
& U_{2}\left(\frac{2 r}{n a_{0}}\right)=e^{-\frac{2 r}{2 n a_{0}}}\left(\frac{2 r}{n a_{0}}\right)^{l}\left(\frac{1}{2}\left[\left(\frac{2 r}{n a_{0}}\right)^{2}-2(\alpha+2)\left(\frac{2 r}{n a_{0}}\right)+(\alpha+1)(\alpha+2)\right]\right)
\end{aligned}
$$

For $n=1, l=0$ (with $\alpha=2 l+1=1$, and $\kappa=n-l-1=0$), we get:

$$
\begin{aligned}
U_{0}\left(\frac{2 r}{n a_{0}}\right) & =e^{-\frac{2 r}{2 a_{0}}}\left(\frac{2 r}{n a_{0}}\right)^{l} \\
U_{0}\left(\frac{2 r}{a_{0}}\right) & =e^{-\frac{2 r}{2 a_{0}}} \\
U_{0}\left(\frac{2 r}{a_{0}}\right) & =e^{-\frac{r}{a_{0}}}
\end{aligned}
$$

For $n=2, l=0$ (with $\alpha=2 l+1=1$, and $\kappa=n-l-1=1$), we get:

$$
\begin{aligned}
U_{1}\left(\frac{2 r}{n a_{0}}\right) & =e^{-\frac{2 r}{2 n a_{0}}}\left(\frac{2 r}{n a_{0}}\right)^{l}\left(-\frac{2 r}{n a_{0}}+\alpha+1\right) \\
U_{1}\left(\frac{r}{a_{0}}\right) & =e^{-\frac{2 r}{4 a_{0}}}\left(-\frac{2 r}{2 a_{0}}+1+1\right) \\
U_{1}\left(\frac{r}{a_{0}}\right) & =e^{-\frac{r}{2 a_{0}}}\left(2-\frac{r}{a_{0}}\right) \\
U_{1}\left(\frac{r}{a_{0}}\right) & =2 e^{-\frac{r}{2 a_{0}}}\left(1-\frac{r}{2 a_{0}}\right)
\end{aligned}
$$

For $n=3, l=0$ (with $\alpha=2 l+1=1$, and $\kappa=n-l-1=2$), we get:

$$
\begin{aligned}
U_{2}\left(\frac{2 r}{n a_{0}}\right) & =e^{-\frac{2 r}{2 n a_{0}}}\left(\frac{2 r}{n a_{0}}\right)^{l}\left(\frac{1}{2}\left[\left(\frac{2 r}{n a_{0}}\right)^{2}-2(\alpha+2)\left(\frac{2 r}{n a_{0}}\right)+(\alpha+1)(\alpha+2)\right]\right) \\
U_{2}\left(\frac{2 r}{3 a_{0}}\right) & =e^{-\frac{2 r}{6 a_{0}}}\left(\frac{1}{2}\left[\left(\frac{2 r}{3 a_{0}}\right)^{2}-2(1+2)\left(\frac{2 r}{3 a_{0}}\right)+(1+1)(1+2)\right]\right) \\
U_{2}\left(\frac{2 r}{3 a_{0}}\right) & =e^{-\frac{r}{3 a_{0}}}\left(\frac{1}{2}\left[\frac{4 r^{2}}{9 a_{0}^{2}}-6\left(\frac{2 r}{3 a_{0}}\right)+6\right]\right) \\
U_{2}\left(\frac{2 r}{3 a_{0}}\right) & =3 e^{-\frac{r}{3 a_{0}}}\left(1-\frac{2 r}{3 a_{0}}+\frac{2 r^{2}}{27 a_{0}^{2}}\right)
\end{aligned}
$$

Next, we do $n=2, l=1$ (with $\alpha=2 l+1=3$, and $\kappa=n-l-1=0$), and we get:

$$
\begin{aligned}
U_{0}\left(\frac{2 r}{n a_{0}}\right) & =e^{-\frac{2 r}{2 n a_{0}}}\left(\frac{2 r}{n a_{0}}\right)^{l} \\
U_{0}\left(\frac{r}{a_{0}}\right) & =e^{-\frac{2 r}{2 a_{0}}}\left(\frac{2 r}{2 a_{0}}\right) \\
U_{0}\left(\frac{r}{a_{0}}\right) & =e^{-\frac{r}{a_{0}}} \frac{r}{a_{0}}
\end{aligned}
$$

Next, we do $n=3, l=1$ (with $\alpha=2 l+1=3$, and $\kappa=n-l-1=1$), and we get:

$$
\begin{aligned}
U_{1}\left(\frac{2 r}{n a_{0}}\right) & =e^{-\frac{2 r}{2 n a_{0}}}\left(\frac{2 r}{n a_{0}}\right)^{l}\left(-\frac{2 r}{n a_{0}}+\alpha+1\right) \\
U_{1}\left(\frac{2 r}{3 a_{0}}\right) & =e^{-\frac{2 r}{6 a_{0}}}\left(\frac{2 r}{3 a_{0}}\right)\left(-\frac{2 r}{3 a_{0}}+3+1\right) \\
U_{1}\left(\frac{2 r}{3 a_{0}}\right) & =e^{-\frac{r}{3 a_{0}}}\left(\frac{2}{3}\right)\left(\frac{r}{a_{0}}\right)\left(4-\frac{2 r}{3 a_{0}}\right) \\
U_{1}\left(\frac{2 r}{3 a_{0}}\right) & =e^{-\frac{r}{3 a_{0}}}\left(\frac{8}{3}\right)\left(\frac{r}{a_{0}}\right)\left(1-\frac{r}{6 a_{0}}\right)
\end{aligned}
$$

Finally, we do $n=3, l=2$ (with $\alpha=2 l+1=5$, and $\kappa=n-l-1=0$), and we get:

$$
\begin{aligned}
U_{0}\left(\frac{2 r}{n a_{0}}\right) & =e^{-\frac{2 r}{2 n a_{0}}}\left(\frac{2 r}{n a_{0}}\right)^{l} \\
U_{0}\left(\frac{2 r}{3 a_{0}}\right) & =e^{-\frac{2 r}{6 a_{0}}}\left(\frac{2 r}{3 a_{0}}\right)^{2} \\
U_{0}\left(\frac{2 r}{3 a_{0}}\right) & =e^{-\frac{r}{3 a_{0}}}\left(\frac{4}{9}\right)\left(\frac{r^{2}}{a_{0}^{2}}\right)
\end{aligned}
$$

After looking at many pictures, it appears as though κ corresponds to the number of radial lobes (plus one) in the probability distribution for the electron orbitals.

Part g

Show that the ground-state wave function is normalized:

$$
\int d^{3} r\left|\psi_{100}(r, \theta, \phi)\right|^{2}=1
$$

We know that $\psi_{100}(r, \theta, \phi)=C_{n l m} R_{21}(r) Y_{00}(\theta, \phi)$ [Tipler \& Llewellyn, p. 7-30]. We know that $R_{21}(r)=\frac{2}{\sqrt{a_{0}^{3}}} e^{-r / a_{0}}$ and $Y_{00}(\theta, \phi)=\sqrt{\frac{1}{4 \pi}}$ Using the integral above, and substituting the spherical Jacobian for $d^{3} r$, we get:

$$
\begin{aligned}
& \int d^{3} r\left|\psi_{100}(r, \theta, \phi)\right|^{2}=1 \\
& \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi}\left|C_{n l m} R_{21}(r) Y_{00}(\theta, \phi)\right|^{2} r^{2} \sin \theta d \phi d \theta d r=1 \\
& \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi}\left|C_{n l m} \frac{2}{\sqrt{a_{0}^{3}}} e^{-r / a_{0}} \sqrt{\frac{1}{4 \pi}}\right|^{2} r^{2} \sin \theta d \phi d \theta d r=1 \\
& \int_{0}^{\infty}\left|C_{n l m} \frac{2}{\sqrt{a_{0}^{3}}} e^{-r / a_{0}} \sqrt{\frac{1}{4 \pi}}\right|^{2} r^{2} d r \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi=1 \\
& 2 \pi \int_{0}^{\infty}\left|C_{n l m} \frac{2}{\sqrt{a_{0}^{3}}} e^{-r / a_{0}} \sqrt{\frac{1}{4 \pi}}\right|^{2} r^{2} d r \int_{0}^{\pi} \sin \theta d \theta=1 \\
& 2 \pi\left(-\left.\cos \theta\right|_{0} ^{\pi}\right) \int_{0}^{\infty}\left|C_{n l m} \frac{2}{\sqrt{a_{0}^{3}}} e^{-r / a_{0}} \sqrt{\frac{1}{4 \pi}}\right|^{2} r^{2} d r=1 \\
& 4 \pi \int_{0}^{\infty} \frac{1}{4 \pi} \frac{4}{a_{0}^{3}} C_{n l m}^{2} e^{-2 r / a_{0}} r^{2} d r=1 \\
& \frac{4}{a_{0}^{3}} C_{n l m}^{2} \int_{0}^{\infty} e^{-2 r / a_{0}} r^{2} d r=1 \\
& \frac{4}{a_{0}^{3}} C_{n l m}^{2}\left(-\left.\frac{a_{0}}{2} e^{-2 r / a_{0}} r^{2}\right|_{0} ^{\infty}+a_{0} \int_{0}^{\infty} e^{-2 r / a_{0}} r d r\right)=1 \\
& \frac{4}{a_{0}^{3}} C_{n l m}^{2}\left(-\left.\frac{a_{0}}{2} e^{-2 r / a_{0}} r^{2}\right|_{0} ^{\infty}+a_{0}\left(-\left.\frac{a_{0}}{2} e^{-2 r / a_{0}} r\right|_{0} ^{\infty}+\frac{a_{0}}{2} \int_{0}^{\infty} e^{-2 r / a_{0}} d r\right)\right)=1 \\
& \left.\frac{4}{a_{0}^{3}} C_{n l m}^{2}\left(-\frac{a_{0}}{2} e^{-2 r / a_{0}} r^{2}+a_{0}\left(-\frac{a_{0}}{2} e^{-2 r / a_{0}} r-\frac{a_{0}^{2}}{4} e^{-2 r / a_{0}}\right)\right)\right|_{0} ^{\infty}=1 \\
& \left.\frac{4}{a_{0}^{3}} C_{n l m}^{2} e^{-2 r / a_{0}}\left(-\frac{a_{0}}{2} r^{2}+a_{0}\left(-\frac{a_{0}}{2} r-\frac{a_{0}^{2}}{4}\right)\right)\right|_{0} ^{\infty}=1 \\
& \left.\frac{4}{a_{0}^{3}} C_{n l m}^{2} e^{-2 r / a_{0}}\left(-\frac{a_{0}}{2} r^{2}-\frac{a_{0}^{2}}{2} r-\frac{a_{0}^{3}}{4}\right)\right|_{0} ^{\infty}=1 \\
& \left.C_{n l m}^{2} e^{-2 r / a_{0}}\left(-\frac{2}{a_{0}^{2}} r^{2}-\frac{2}{a_{0}} r-1\right)\right|_{0} ^{\infty}=1 \\
& \left.e^{-2 r / a_{0}}\left(-\frac{2}{a_{0}^{2}} r^{2}-\frac{2}{a_{0}} r-1\right)\right|_{0} ^{\infty}=\frac{1}{C_{n l m}^{2}} \\
& e^{-2 \infty / a_{0}}\left(-\frac{2}{a_{0}^{2}} \infty^{2}-\frac{2}{a_{0}} \infty-1\right)-e^{-20 / a_{0}}\left(-\frac{2}{a_{0}^{2}} 0^{2}-\frac{2}{a_{0}} 0-1\right)=\frac{1}{C_{n l m}^{2}} \\
& e^{-2 \infty / a_{0}}\left(-\frac{2}{a_{0}^{2}} \infty^{2}-\frac{2}{a_{0}} \infty-1\right)+1=\frac{1}{C_{n l m}^{2}} \\
& e^{-2 \infty / a_{0}}\left(-\frac{2}{a_{0}^{2}} \infty^{2}-\frac{2}{a_{0}} \infty-1\right)=\frac{1}{C_{n l m}^{2}}-1
\end{aligned}
$$

But, by L'Hopital's rule, we know that $e^{-2 \infty / a_{0}}\left(-\frac{2}{a_{0}^{2}} \infty^{2}-\frac{2}{a_{0}} \infty-1\right)=0$, so we have that:

$$
0=\frac{1}{C_{n l m}^{2}}-1
$$

But, this is only true if $C_{n l m}^{2}=1$, which tells us that $\psi(r, \theta, \phi)$ was already normalized.

Problem 7.26

Show that an electron in the $n=2, l=1$ state of hydrogen is most likely to be found at $r=4 a_{0}$.
Generally, $\psi_{n l m}$ is defined by $\psi_{n l m}(r, \theta, \phi)=C_{n l m} R_{n l}(r) \Theta_{l m}(\theta) \Phi_{m}(\phi)=C_{n l m} R_{n l}(r) Y_{l m}(\theta, \phi)$. We also know that:

$$
\begin{aligned}
\int \psi^{*} \psi d \tau & =1 \\
\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \psi^{*} \psi r^{2} \sin \theta d \phi d \theta d r & =1
\end{aligned}
$$

And, we know that

$$
\begin{aligned}
R_{21}(r) & =\frac{1}{2 \sqrt{6 a_{0}^{3}}} \frac{r}{a_{0}} e^{-r / 2 a_{o}} \\
Y_{10}(\theta, \phi) & =\sqrt{\frac{3}{4 \pi}} \cos \theta \\
Y_{1 \pm 1}(\theta, \phi) & = \pm \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi}
\end{aligned}
$$

If we recognize that $R_{21}(r)$ does not depend at all upon either θ or ϕ, and that neither $Y_{10}(\theta, \phi)$ nor $Y_{1 \pm 1}(\theta, \phi)$ depend on r, we can rewrite the integral from above:

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} \psi^{*} \psi r^{2} \sin \theta d \phi d \theta d r & =1 \\
\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} C_{21 m}^{*} R_{21}^{*} Y_{1 m}^{*} C_{n l m} R_{21} Y_{1 m} r^{2} \sin \theta d \phi d \theta d r & =1 \\
\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} C_{21 m}^{*} C_{21 m} R_{21}^{2} Y_{1 m}^{*} Y_{1 m} r^{2} \sin \theta d \phi d \theta d r & =1 \\
C_{21 m}^{*} C_{21 m} \int_{0}^{\infty} R_{21}^{2} r^{2} d r \int_{0}^{\pi} \int_{0}^{2 \pi} Y_{1 m}^{*} Y_{1 m} \sin \theta d \phi d \theta & =1
\end{aligned}
$$

Strictly speaking, the next two steps are not required. $Y(\theta, \phi)$ will only scale the value of the function at $r=4 a_{0}$, but it will not change that $r=4 a_{0}$ is where the maximal occurs. However, since it is instructive to see these integrals, and since the work has already been done, they are included. We can now find $\int_{0}^{\pi} \int_{0}^{2 \pi} Y_{1 m}^{*} Y_{1 m} \sin \theta d \phi d \theta$ for both $m=0$ and $m= \pm 1$. For $m=0$, we have:

$$
\begin{aligned}
\int_{0}^{\pi} \int_{0}^{2 \pi} Y_{10}^{*} Y_{10} \sin \theta d \phi d \theta & =\int_{0}^{\pi} \int_{0}^{2 \pi} Y_{10}^{2} \sin \theta d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\sqrt{\frac{3}{4 \pi}} \cos \theta\right)^{2} \sin \theta d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \frac{3}{4 \pi} \cos ^{2} \theta \sin \theta d \phi d \theta \\
& =\frac{3}{4 \pi} \int_{0}^{\pi} \int_{0}^{2 \pi} \cos ^{2} \theta \sin \theta d \phi d \theta \\
& =\frac{3}{4 \pi} \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta \int_{0}^{2 \pi} d \phi
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3}{4 \pi}(2 \pi) \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta \\
& =\frac{3}{2} \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta \\
& =\frac{3}{2}\left(-\left.\frac{1}{3} \cos ^{3} \theta\right|_{\theta=0} ^{\pi}\right) \\
& =\frac{1}{2}(-(-1-1)) \\
& =1
\end{aligned}
$$

For $m= \pm 1$ we have:

$$
\begin{aligned}
\int_{0}^{\pi} \int_{0}^{2 \pi} Y_{1 \pm 1}^{*} Y_{1 \pm 1} \sin \theta d \phi d \theta & =\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\pm \sqrt{\frac{3}{8 \pi}} \sin \theta e^{-i \phi}\right)\left(\pm \sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi}\right) \sin \theta d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\pm \sqrt{\frac{3}{8 \pi}} \sin \theta\right)^{2}\left(e^{-i \phi}\right)\left(e^{i \phi}\right) \sin \theta d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \frac{3}{8 \pi} \sin ^{3} \theta\left(e^{-i \phi+i \phi}\right) d \phi d \theta \\
& =\frac{3}{8 \pi} \int_{0}^{\pi} \int_{0}^{2 \pi} \sin ^{3} \theta d \phi d \theta \\
& =\frac{3}{8 \pi} \int_{0}^{\pi} \sin ^{3} \theta d \theta \int_{0}^{2 \pi} d \phi \\
& =\frac{3}{8 \pi}(2 \pi) \int_{0}^{\pi} \sin ^{3} \theta d \theta \\
& =\frac{3}{4} \int_{0}^{\pi}\left(1-\cos ^{2} \theta\right) \sin \theta d \theta \\
& =\frac{3}{4}\left(\int_{0}^{\pi} \sin ^{2} \theta d \theta-\int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta\right) \\
& =\left.\frac{3}{4}\left(-\cos ^{2} \theta-\left(-\frac{1}{3} \cos ^{3} \theta\right)\right)\right|_{\theta=0} ^{\pi} \\
& =\left.\frac{1}{4}\left(\cos ^{3} \theta-3 \cos \theta\right)\right|_{\theta=0} ^{\pi} \\
& =\frac{1}{4}\left(\left(\cos ^{3} \pi-3 \cos \pi\right)-\left(\cos ^{3} 0-3 \cos 0\right)\right) \\
& =\frac{1}{4}\left(\cos ^{3} \pi-3 \cos \pi-\cos ^{3} 0+3 \cos 0\right) \\
& =\frac{1}{4}(-1-3(-1)-1+3(1)) \\
& =\frac{1}{4}(-1+3-1+3) \\
& =\frac{1}{2}
\end{aligned}
$$

So, we now know that $Y_{1 m}(\theta, \phi)=1$. So we're left with:

$$
C_{21 m}^{*} C_{21 m} \int_{0}^{\infty} R_{21}^{2} r^{2} d r=1
$$

However, looking ahead, we know that we will be finding where the derivative of some function is zero, and a constant factor will not change where the derivative is zero, just the magnitude of the function at that point. So, we have $\int_{0}^{\infty} C_{21 m}^{*} C_{21 m} R_{21}^{2} r^{2} d r=1$,
which looks like a probability distribution integration, of the form $\int_{0}^{\infty} P(r) d r=1$. So, let's let $P(r) d r=C_{21 m}^{*} C_{21 m} R_{21}^{2} r^{2} d r$, so $P(r)=C_{21 m}^{*} C_{21 m} R_{21}^{2} r^{2}$, and the maximum probability will occur at $\frac{d P}{d r}=0$. This is:

$$
\begin{aligned}
\frac{d}{d r} P(r) & =0 \\
C_{21 m}^{*} C_{21 m} \frac{d}{d r}\left(\left(\frac{1}{2 \sqrt{6 a_{0}^{3}}} \frac{r}{a_{0}} e^{-r / 2 a_{o}}\right)^{2} r^{2}\right) & =0 \\
C_{21 m}^{*} C_{21 m} \frac{d}{d r}\left(\left(\frac{1}{2 a_{0} \sqrt{6 a_{0}^{3}}}\right)^{2} r^{2} e^{-r / a_{o}} r^{2}\right) & =0 \\
C_{21 m}^{*} C_{21 m}\left(\frac{1}{2 a_{0} \sqrt{6 a_{0}^{3}}}\right)^{2} \frac{d}{d r}\left(r^{4} e^{-r / a_{o}}\right) & =0 \\
C_{21 m}^{*} C_{21 m}\left(\frac{1}{2 a_{0} \sqrt{6 a_{0}^{3}}}\right)^{2}\left(r^{4}\left(-\frac{1}{a_{0}}\right) e^{-r / a_{0}}+4 r^{3} e^{-r / a_{0}}\right) & =0 \\
C_{21 m}^{*} C_{21 m}\left(\frac{1}{2 a_{0} \sqrt{6 a_{0}^{3}}}\right)^{2} r^{3} e^{-r / a_{0}}\left(-\frac{r}{a_{0}}+4\right) & =0
\end{aligned}
$$

Since $e^{-r / a_{0}}$ is never zero, and since $r=0$ is impossible because $l=1$ so the electron must have angular momentum which would not happen at $r=0$, we have:

$$
\begin{aligned}
-\frac{r}{a_{0}}+4 & =0 \\
-\frac{r}{a_{0}} & =-4 \\
r & =-4\left(-a_{0}\right) \\
r & =4 a_{0}
\end{aligned}
$$

Problem 7.29

If a classical system does not have a constant charge-to-mass ratio throughout the system, the magnetic moment can be written

$$
\mu=g \frac{Q}{2 M} L
$$

where Q is the total charge, M is the total mass, and $g \neq 1$.

Part a

Show that $g=2$ for a solid cylinder $\left(I=\frac{1}{2} M R^{2}\right)$ that spins about its axis and has a uniform charge on its cylindrical surface.

We know that $\mu=i A$. We also know, in this case, that the area of the loop about which the charge is circulating is $A=\pi R^{2}$. To find i, we must recognize that current is equal to charge times the frequency, or $i=Q f$, that $f=\frac{\omega}{2 \pi}$, and that $L=I \omega$. This gives us:

$$
\mu=i A
$$

$$
\begin{aligned}
& =Q f \pi R^{2} \\
& =Q \frac{\omega}{2 \pi} \pi R^{2} \\
& =Q \frac{1}{2}\left(\frac{L}{I}\right) R^{2} \\
& =Q \frac{1}{2}\left(\frac{L}{\frac{1}{2} M R^{2}}\right) R^{2} \\
& =Q\left(\frac{L}{M}\right) \\
& =2 \frac{Q}{2 M} L
\end{aligned}
$$

So, $g=2$.

Part b

Show that $g=2.5$ for a solid sphere $\left(I=2 M R^{2} / 5\right)$ that has a ring of charge on the surface at the equator, as shown in Figure 7-33 [Tipler \& Llewellyn, p. 309].

In this case, practically everything is identical to part (a) except for the moment of inertia. So we have:

$$
\begin{aligned}
\mu & =i A \\
& =Q f \pi R^{2} \\
& =Q \frac{\omega}{2 \pi} \pi R^{2} \\
& =Q \frac{1}{2}\left(\frac{L}{I}\right) R^{2} \\
& =Q \frac{1}{2}\left(\frac{L}{\frac{2}{5} M R^{2}}\right) R^{2} \\
& =\frac{5}{4} Q\left(\frac{L}{M}\right) \\
& =\frac{5}{2} \cdot \frac{Q}{2 M} L
\end{aligned}
$$

So, $g=\frac{5}{2}=2.5$.

Problem 7.39

Consider a system of two electrons, each with $l=1$ and $s=\frac{1}{2}$.

Part a

What are the possible values of the quantum number for the total orbital angular momentum $\vec{L}=\vec{L}_{1}+\vec{L}_{2}$?

The quantum number, L, for \vec{L} has possible values $l_{1}+l_{2}, l_{1}+l_{2}-1, \ldots,\left|l_{1}-l_{2}\right|$, where l_{1} and l_{2} are the total orbital angular momentum quantum numbers for \vec{L}_{1} and \vec{L}_{2} respectively. These are both 1 , so, we have that $L=2, L=1$, or $L=0$.

Part b

What are the possible values of the quantum number S for the total spin $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$?

Similarly to the above, we have quantum numbers, s_{1} and s_{2} equal to $\frac{1}{2}$, so we have the total spin quantum number as $S=1$ or $S=0$.

Part c

Using the results of parts (a) and (b), find the possible quantum numbers j for the combination $\vec{J}=\vec{L}+\vec{S}$.
The possible quantum numbers for j can be either $j=L+S$ or $j=|L-S|$. Since we have multiple possibilities for L and S, we try each combination to find all possible quantum numbers. So, for j we have: $2+1=3,2-1=1,2+0=2,2-0=2$, $1+1=2,1-1=0,1+0=1,1-0=0,0+1=1,|0-1|=1,0+0=0,0-0=0$. So, j can equal: $3,2,1$, or 0 .

Part d

What are the possible quantum numbers j_{1} and j_{2} for the total angular momentum of each particle?

Since $l_{1}=l_{2}=1$ and $s_{1}=s_{2}=\frac{1}{2}$, both j_{1} and j_{2} have the same possible quantum numbers. These are given, as in part (c), by $j_{1}=l_{1}+s_{1}$ or $j_{1}=\left|l_{1}-s_{1}\right|$. So, we get the possible quantum numbers for $j_{1}=j_{2}$ to be 1.5 or 0.5 .

Part e

Use the results of part (d) to calculate the possible values of j from the combinations of j_{1} and j_{2}. Are these the same as in part (c)?

We know that that the quantum number, j, for \vec{J} has possible values $j_{1}+j_{2}, j_{1}+j_{2}-1, \ldots,\left|j_{1}-j_{2}\right|$, So, using the results from part (d), we see that the possible values for j are the integers between $1.5+1.5=3$ and $1.5-1.5=0$, or between $1.5+0.5=2$ and $1.5-0.5=1$, or between $0.5+1.5=2$ and $|0.5-1.5|=1$, or between $0.5+0.5=1$ and $0.5-0.5=0$. So, all the possible values are: $3,2,1$, and 0 . This is the same as in part (c).

Problem 7.44

Write the electron configuration of the following elements:

Part a

Carbon

Carbon has $Z=6$, so its electron configuration is $1 s^{2} 2 s^{2} 2 p^{2}$.

Part b

Oxygen

Oxygen has $Z=8$, so its electron configuration is $1 s^{2} 2 s^{2} 2 p^{4}$.

Part c

Argon
Argon has $Z=18$, so its electron configuration is $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$.

Problem 7.73

In the anomalous Zeeman effect, the external magnetic field is much weaker than the internal field seen by the electron as a result of its orbital motion. In the vector model (Figure 7-30 [www.whfreeman.com/tiplermodernphysics5e]) the vectors \vec{L} and \vec{S} precess rapidly around \vec{J} because of the internal field and \vec{J} precesses slowly around the external field. The energy splitting is found by first calculating the component of the magnetic moment μ_{J} in the direction of \vec{J} and then finding the component of $\vec{\mu}_{z}$ in the direction of \vec{B}.

Part a

Show that $\mu_{J}=\frac{\vec{\mu} \cdot \vec{J}}{J}$ can be written

$$
\mu_{J}=-\frac{\mu_{B}}{\hbar J}\left(L^{2}+2 S^{2}+3 \vec{S} \cdot \vec{L}\right)
$$

We can substitute $\vec{\mu}=\frac{-g_{L} \mu_{B} \vec{L}}{\hbar}+\frac{-g_{S} \mu_{B} \vec{S}}{\hbar}=-\frac{\mu_{B}}{\hbar}\left(g_{L} \vec{L}+g_{S} \vec{S}\right)$, where $g_{L}=1$ and $g_{S} \approx 2$ ([Tipler \& Llewellyn, p. 287]), and $\vec{J}=\vec{L}+\vec{S}$, and we get:

$$
\begin{aligned}
\mu_{J} & =\frac{\vec{\mu} \cdot \vec{J}}{J} \\
& =\frac{\left(-\frac{\mu_{B}(\vec{L}+2 \vec{S})}{\hbar}\right) \cdot(\vec{L}+\vec{S})}{J} \\
& =\frac{\left(\frac{-\mu_{B}}{\hbar}\right)((\vec{L}+2 \vec{S}) \cdot(\vec{L}+\vec{S}))}{J} \\
& =\frac{-\mu_{B}}{\hbar J}((\vec{L}+2 \vec{S}) \cdot(\vec{L}+\vec{S})) \\
& =\frac{-\mu_{B}}{\hbar J}(\vec{L} \cdot(\vec{L}+\vec{S})+2 \vec{S} \cdot(\vec{L}+\vec{S})) \\
& =\frac{-\mu_{B}}{\hbar J}((\vec{L} \cdot \vec{L}+\vec{L} \cdot \vec{S})+(2 \vec{S} \cdot \vec{L}+2 \vec{S} \cdot \vec{S})) \\
& =\frac{-\mu_{B}}{\hbar J}\left(L^{2}+\vec{L} \cdot \vec{S}+2 \vec{L} \cdot \vec{S}+2 S^{2}\right) \\
& =-\frac{\mu_{B}}{\hbar J}\left(L^{2}+2 S^{2}+3 \vec{L} \cdot \vec{S}\right)
\end{aligned}
$$

Part b

From $J^{2}=(\vec{L}+\vec{S}) \cdot(\vec{L}+\vec{S})$ show that $\vec{S} \cdot \vec{L}=\frac{1}{2}\left(J^{2}-L^{2}-S^{2}\right)$.
This is, easily:

$$
\begin{aligned}
J^{2} & =(\vec{L}+\vec{S}) \cdot(\vec{L}+\vec{S}) \\
J^{2} & =(\vec{L} \cdot(\vec{L}+\vec{S})+\vec{S} \cdot(\vec{L}+\vec{S}))
\end{aligned}
$$

$$
\begin{aligned}
J^{2} & =\vec{L} \cdot \vec{L}+\vec{L} \cdot \vec{S}+\vec{S} \cdot \vec{L}+\vec{S} \cdot \vec{S} \\
J^{2} & =\vec{L} \cdot \vec{L}+\vec{S} \cdot \vec{L}+\vec{S} \cdot \vec{L}+\vec{S} \cdot \vec{S} \\
J^{2} & =L^{2}+2 \vec{S} \cdot \vec{L}+S^{2} \\
\frac{1}{2}\left(J^{2}-L^{2}-S^{2}\right) & =\vec{S} \cdot \vec{L}
\end{aligned}
$$

Part c

Substitute your result in part (b) into that of part (a) to obtain

$$
\mu_{J}=-\frac{\mu_{B}}{2 \hbar J}\left(3 J^{2}+S^{2}-L^{2}\right)
$$

This becomes:

$$
\begin{aligned}
\mu_{J} & =-\frac{\mu_{B}}{\hbar J}\left(L^{2}+2 S^{2}+3 \vec{L} \cdot \vec{S}\right) \\
& =-\frac{\mu_{B}}{\hbar J}\left(L^{2}+2 S^{2}+3 \frac{1}{2}\left(J^{2}-L^{2}-S^{2}\right)\right) \\
& =-\frac{\mu_{B}}{2 \hbar J}\left(2 L^{2}+4 S^{2}+3 J^{2}-3 L^{2}-3 S^{2}\right) \\
& =-\frac{\mu_{B}}{2 \hbar J}\left(3 J^{2}-L^{2}+S^{2}\right)
\end{aligned}
$$

Part d

Multiply your result by J_{z} / J to obtain

$$
\mu_{z}=-\mu_{B}\left(1+\frac{J^{2}+S^{2}-L^{2}}{2 J^{2}}\right) \frac{J_{z}}{\hbar}
$$

This becomes:

$$
\begin{aligned}
-\frac{\mu_{B}}{2 \hbar J}\left(3 J^{2}-L^{2}+S^{2}\right)\left(\frac{J_{z}}{J}\right) & =-\frac{\mu_{B} J_{z}}{2 \hbar J^{2}}\left(3 J^{2}-L^{2}+S^{2}\right) \\
& =-\frac{\mu_{B} J_{z}}{\hbar}\left(\frac{3 J^{2}-L^{2}+S^{2}}{2 J^{2}}\right) \\
& =-\mu_{B}\left(\frac{2 J^{2}}{2 J^{2}}+\frac{J^{2}-L^{2}+S^{2}}{2 J^{2}}\right) \frac{J_{z}}{\hbar} \\
& =-\mu_{B}\left(1+\frac{J^{2}-L^{2}+S^{2}}{2 J^{2}}\right) \frac{J_{z}}{\hbar}
\end{aligned}
$$

