Wayne Witzke ProblemSet #7 PHY 361

Problem 1

[35 pts] Hydrogen radial wavefunctions: the hydrogen potential is V (r) = — Zk.e?/r.

Part a

Using the Lapacian V? in spherical coordinates, show that

o1 L?
= — = —7 —_—
2u 1 Or? 2ur?
where the second term represents rotational kinetic energy, with

i 1o .0 1 &
2 _ 32 9 .99 g
L7=—h <smeaebmeae+sm2w¢2>

Write Schrédinger’s equation for (0, ¢) of the hydrogen atom using this form of 7.

Similar to problem (2) part (a) in homework set #6, we start with the multi-dimensional time-independent Schrédinger’s equation
and substitute in the Lapacian in spherical coordinates:

Hy = Evy
Ty+Vy = Ey
2
—iv2w+V¢ = B
2u
(10 (,0 1[ 1 0 (. 1 02 _
o <a ( 8r>+r?Lmeae(5111989>+sn298¢2bw+vw = B
So now we must show that %2% (7"2%) = %59—:27 so
10 (,0\ 1
a( a) = o
2 20 102
(r?+7~8r>f(r) = o2 fr)
2 20 10 (0
(3e 1) 10 = 15 (5 )
2 20 19,
(5t 25 ) S0 = o0 )+ 1)
2 26 1 ! /
(5t 250 )10 = 20 @)+ 7 0)+ 1 0)
92 20 " 2,
(gt 25) I = 04200
2 20 9 20
a2 "o T a2 o

So, we can replace i (r W) with ol

B2 /1 02 1 1 0 . 0 1 92 N
o (r@ﬂr+r2[sin@&'@(Sm980>+sin20&52]>w+vw =

—h?1 0? —h? 1 0 /. 0 1 92 -
('27”4‘ |: " - (sm@) +m29&¢2]>w+Vw = E’lﬂ
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If L2 = —h? (Siig% SmQ% + ﬁ%), then we have:
—h%1 92 L2 .
—_—— — Viy = FE
241 r@rQTJrZuTZwJF v v
Ty +Vy = Ey

Schrédinger’s equation is, then:

2 2 jz2 .
<2u71~88r?r+2ur?> pnper e = Bt e

But V =V(r) = —Zk.e?/r, so

v I
2u rore 2ur?

Zk.e?
r

)1/)(739»@— 1/)(7“»9,@ = E¢(Ta9>¢>

Part b

Make the substitution ¢(r,0, ) = Lu(r)Y;,,(6,¢). The factor 1 takes into account the spreading out of the wave
function as it gets farther from the origin. Use the eigenvalue of Y},,,

LY = R2L(1+1) Y

to simplify the equation.

We start with:

Zk.e?
r

21 92 iz
( ! V(r0.6) = Ey(r6,9)

wrarz“w)w(r,w)—

Substituting in 1(r, 0, ¢) = Lu(r)Y,, (6, ¢), we get:

Bou(r)Yin(6,6) = (Zﬁ*aﬁ) PO in(0:0) = L L0000
_ ‘2757{16 0.9 5 T ) + ﬂﬁmw) - B ¥ 0,9)
Bu) = o)+ m 0wy - 2

Part ¢

Show that the result looks like the Schrédinger equation for u(r) in one dimension with a centrifugal potential V..(r)
R21 (I + 1) /2ur? in addition to the Colomb potential. Compare with the potential of the centrifugal force F' = ma,.
mv?/r using L = mur.
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If V.(r) =R (1 + 1) /2ur?, then we can replace A%l (I + 1) /2ur*:

—h2 92 Zk.e?
Bu(r) = W@“U‘)*‘Vc(r)“(ﬂ— "

u(r)

If Vo (r) = R2L (1 + 1) /2ur?, then we should be able to find F = —-L (r21 (1 4+ 1) /2ur?). So:

o d<ﬁ21(1+1)>

Cdr 2ur?
2
.o _hl(z+1)i(r,2)
21 dr
2
P 1 (R VR
2u
R2lL(l+1
F - I+ )r73
w
2
F = L—g
ur
po_ (wr)
pr®
P m?
T

So, we can see that the derivative of V_ (r) gives us an apparent centrifugal force.

Part d
Make the substitutions
u(r) = U(p)wherep = i—:
nag B2
T = 7where ag = hoc?
E, = _ZT;EO where By = M;ezf

to obtain the dimensionless equation

9% I1(l+1) n 1
(g =+ ) v =0

Starting with:

—h? 9? u(r) o Zkee?
and substituting in u(r) = U(p), where p = 72_—:, and recognizing that r = pr, /2, we get:
—h? 92 U (p) Zkee?
E = == B+ 1) — 2l
Ul) = Gl )+ g w1 - 20
—h? 92 U (p) 27 kce?
- 2 yu — R+ 1) — U
20 Or2 (P) + 2 (p;")z ( + ) o (,0)
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—h? 52 U (p) 27k.e?
- Y +— RA+1)- U
i 0 )+ L+ ) = U )
—h? 92 2U (p) 27kce?
= ———=U(p)+ RPL(I+1) - ——U
s oyl )+ o i) = 2 )
We also have that %8% = %, and that
@0 (wo
or2  or \orop
But, we know that % = % (f:) = T% so this becomes:
o o9(290
or? or \r, Op
_ 20 /(0
o, Or \Op
RENTAYE)
 r, \Orop) \Op
2\ &
/) 0p?
40
r2 Op?
So, substituting this in, we get:
—h? 92 2U (p) 2Zkce?
EU = ——U REL(I+1) — U
(®) 2w 0 O )= VW)
—h%* 4 9? 2U (p) . 2Zkce?
- 2o U+ K21+ 1 U
o 3070 Y 1 (pra)’? (1) -= v
Now, since r, = 22> | ag = —M,:fez, E,== :ZE“, and Ey = “55264.
EU(p) = ﬁiﬁU(p)—&- 20 (p) hQZ(Z+1)—2Zk862U(p)
2u 13 9p? 1 (pro)? PTn
R4 2 2
= T v 2L ey - Py )
2/.1, nag 28p2 nag 2 pM
("2%) p ("3 z
R 724 O 22U (p) 27k, e?
= — = Up)+ —5h(1+1) - =—"U
i a7 U P o B ) = 2
52 2 2 2 27, .2
= 2Ty 22 ey - 2y
2 R \2 Op? 2 \2 on—t2
(np,kee?) H (pnm) ke
2 2
_ 0P (phee®)” 274 0> ) (pkee®)™ 22U (p) L) 2%22%362(]@)
2p (nh2)®>  0p? I (pnh2)2 pnh?
—h? ket 724 9? p2k2e*27%U (p) . 2uk2et Z?
— T HRCHEC P Re€ 22 Y AP 1) — ZHPeC 2
—1 pk2e* 7224 02 uk2e*daZ2U (p) duk2erz?
— SRR & 2 Y HheC 22 ¥ \P) 1) — ZHFeC 24
2 n2h?  9p? (o) 2p?n2h? Hi+1) 2pnh? U )
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E0224 82 E0Z24U (p) 4E0Z27’L
= - - 22 = i41) -
wz el W+ =g ) = — 5= U ()
0? U (p) n
= AE,— 4F, I(l+1)4+4FE,—
5,0 (P) = 4B = (4 1) + 4B, U (p)

Here, we know that £ = E,,, so we have E, cancelling:

) = B0 ()~ 45, 1) 48,20 )
& U0 n
Ul) = 455U =121 )+ 45U )
2 n
0 = 48870'() U(2”)z(z+1)+4pU(p)U(p)
2 n
0 = 55U - TPy + L) - SO

[ i+ o1
o = (o)

Part e
Use repeated product rules to show that
(fgh)" = f"gh+ fg"h+ fgh" +2f'g'h+2f'gh' +2fg'h'
Use this and the substitution U(p) = e ?/2p! L(p) to obtain Laguerre's differential equation
pL" +2l+2—-p)L'+(n—1—-1)L=0

(20+1)
The solutions are associated Laguerre polynomials L —1(p).

Assuming that these are all functions in x, we get:

B B
%fgh = %f(gh)
)
= fo—gh+ f'gh
ox
= f(gh+g'h)+ fgh
= fgh'+ fg'h+ f'gh
and:
32
a2l = 87 (fgh' + fg h+ f' gh)
0
= affgh’ fg h+ f’gh
CL'

0 8 0
= a*f (gh") + 37f (g'h) + a*f/ (gh)
= f*(gh)+f (gh’)+f (gh)+f (g'h)+ f' *(gh)+f”(gh)
f(gh” +g'h') + f'gh’ + f(g B +g"h) + f’g’h+ f'(gh" +g'h) + f"gh
fah" + fg'W + f'gh’ + fg'h + fg"h+ f'g'h+ f'gh' + f'g'h+ f"gh
fgh// _"_ 2fg/hl +2flgh/ + +fg//h+2flg/h+ fl/gh
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Here, it becomes necessary to change the given function, U (p) by multiplying through by a factor p, so we get pU(p) =
e P/2p!* 1 L(p). Doing this, we get:

0 = <58p22— l(l;l) +z—i>pU(p)

0 = ;;pU (p) — l(l; 1)pU (p) + %pU (p) — ipU (p)

0 = aa;pU (p) - l(l;l)ep/zpl“L (p) + %6’”/2/)”% (p) ie’p/zpl“L (p)
0 = ()= Mty ) 1 B2 ) = L L)

Now, using the triple product rule from above, we can calculate the second derivative. But first, we find f/, ¢', #/, f", g”, h",
with f (p) = e7*/2, g(p) = '+, h(p) = L (p):

1

f/ _ —56_[)/2
g=>0+1)7
h'=L"(p)
"= 1679/2

g"=11+1)p"
h// — L// (p

So, substituting these into the second derivative formula, we get:

1
(fgh)" = <e ?Pp " L(p) + e PPLL+1) p' T L (p) + e P2p! L (p)
1

1 1
—25¢ 21+ 1) 'L (p) = 257 "2p" L (p) + 2772 (14 1) 'L (p)

Then, substituting this into the results from part (d), we get:

0

1
1€ (p) + e 1) p L (p) o PP (p)

202 (141) L () — 25672 I () + 20 (L4 1) 0T (o)
1(1+1)
2

_ n _ 1
e p/zpl+1L(p)+;e PPRPTIL (p) = 720 L (p)

ipl“L (p) + 1A+ 1) p' T L(p) + L (p) = (1 4+ 1) 'L (p) = p' L (p) +2(1+ 1) p'L’ (p)

Il+1) ;.4 n .4 1,4

—Tp” L(p)+ ;p“ L(p) = 30 L(p)

iplL (p) +LU+1)p Lp) +p'L" (p) = UL+ 1) L(p) = p'L' (p) +2 (1 +1) L' (p)
11+1)

oL ) + 50 L (o) = 0L (0)
LI+1)p ' L(p) +pL" (p) = L+ 1) L(p) = pL' (p) +2(L+ 1) L' (p)
L+ 1) P L () + - pL (0)

pL" (p) = (1 +1)L(p) — pL' (p) +2(I+1) L' (p) + nL (p)
pL" (p) +2(1+1) L' (p) — pL' (p) + nL (p) — (I + 1) L (p)
pL" (p) + (2l +2—=p) L' (p) + (n—1+1) L(p)
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pL" +(2l+2—p) L'+ (n—=1—-1)L =0

Part f
Using the values of L,({a) from http://mathworld.wolfram.com/LaguerrePolynomial.html, Egs. 32-35, substitute

back to find the radial wave functions R,,;(r) for n = 1, 2, and 3. Compare your answers with table 7-2 in the text.
What is the physical significance of x?

Equations 32 through 35 L' are:

L@ = 1
Lga)(x) = —z+a+l
L (@) = %[xQ—Q(a+2)x+(a+1)(a+2)]

Now we can substitute these back into Uy (p) = e=?/2p! L™ (p), using p = 2L and r, = 2L = nag:

Uslp) = e ??p (1)
Uilp) = e ??p(—p+a+1)
1
Us(p) = e P2 (2 [p22(a+2)p+(a+1)(a+2)})
2r _2r 2r \!
o) = e (2]
nag ao
l
02y = e (2""> (2”+a+1)
nag naop nao

V() = (fo)l (; [(;)2—2@”) (Z)+@+nia+2)

Form=1,1=0(witha=2l4+1=1,and k =n—1—1=0), we get:
l
U2l = e (W)

naop nagp
U (27“) —z2r
—_— = [ 0
0 a0
2 _r
Uo(l = € 9
ao

Forn=2,1=0(witha=2l+1=1,and k=n—1—1=1), we get:

2 e (2r\' /[ 2
R I

nag nag naop
_2r 2
Up(—) = e o (;+1+1>
ag ago
Ul(L — ¢ Zag (2 _ T)
ag ag
r r r
Ui(—) = 2e 2= 1——
1((10 € ’ ( 2a0>
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Forn=3,1=0(witha=2l+1=1and k =n—1—1=2), we get:

2r _ _2r 2r ! 1 2\ 2 2r
—_— 2nag | —— — — ] =2 2) | — 1 2
Ug(na()) e (na0> (2 l(nao) (a+ )(na())+(a+ ) (a+2)

Us(2D) = o (;[(27>2—2(1+2)<2T)+(1+1)(1+2) )

)

3(10 30,0 30,0
2r _ e (1 [4r? 2r
Us(—) = Bag [ — |—5 — 6| — 6
2(3%) © (2 [9a3 <3a0> " D
2r _r 2r 272
U — — 3 3a ]_ - -
2(5355) « ( 3a0 27a3)

Next, wedon=2,1=1 (witha=2l+1=3,and k=n—1—1=0), and we get:

2 e 20\
UO(—T) — o T <T>

nagp naop
Us r ) —zr 2r
R = e 2a0 [ —
0 () 2a0
r T
U R — T ag —
O(ao) v ao

Next, wedon=3,l=1(witha=2l+1=3,and k =n—1—1=1), and we get:

l
2 __2r 2 2
Ul(i) = e 23{:,0 (T’> <T +a+1)
nagp nao naop
2r _2r [ 2r 2r
Ui(—) = 6ag | — ——+3+1
1(3CL0) € ’ (3@0) ( 3&0 et )
2r _r (2 T 2r
U - — 3a — P 4 — —
1(3(10) € ’ (3) (ao) ( 3(10)
2r __r 8 T r
=y = Zag [ = _ 1— —
Ul(Sao) € ’ (3) <CLQ) ( 6(10)
Finally, we don =3,1=2 (witha=2+1=5, and k =n—1—1=0), and we get:

l
2 _.2r 2
U2y = et (T)

nao nagp
2r o (202
U - — 6a -
0(3610) o <3a0>

2r _r (4 r?
JE— — 3a J—
i = < (5) ()

After looking at many pictures, it appears as though k corresponds to the number of radial lobes (plus one) in the probability

distribution for the electron orbitals.

Part g

Show that the ground-state wave function is normalized:

/d37"|1/)100(7“797¢)\2 =1

Page 8



Wayne Witzke ProblemSet #7

PHY 361

We know that 199 (7,0, ¢) = CpimRa1 (1) Yoo (6, ¢) [Tipler & Llewellyn, p. 7-30]. We know that Ra; (7)

Yoo (0,¢) = \/ 1= Usmg the integral above, and substituting the spherical Jacobian for d®r, we get:

/ &r r0o(r, 60, 0)

o) T 27
/ / / (Coten R (1) Yoo (6, 0)| r2 sin 8 dsdBdr
o Jo Jo

[e%s) T 27
L e
o Jo Jo as

e’} 27
/ C

0

2
—r/ao, [~ r2dr/ sin 6 do do
0

2 1
nlm™— —
A /a% 47 0

—r/ag

2
2 sin 0 dpdOdr

2
27r/ Chim —r/ao, [ — rzdr/ sin 0 df
0 ag 47T 0
™ [ 2 Tl
27 | —cos@ )/ Chim “rlao, | 1 2dp
( 0 0 \/a 3 47T

o0
47r/ L4 02 e=2r/a0p2 gy
0 4ma
o0
Tcilm/ e 2r/aoy2 gy
Qg 0

4 ° e
c? (—aoew/aor2 +a0/ ezr/aordr>
0 0

;g nlm 9
—I—@ /00 6_27/“0dr>>
o 2 Jo

oo

0

C @e—Qr/aoTQ Ta _706—2r/a0 &%e_gr/ao
nlm 2 0 9 1 i

G e (o[
2 2 1),

C2 —2r/ag ( 227,2 . 37,, ~1
ag ao 0

0,(2) Qg
e~ 200/a0 ( 3002 - 3oo - 1)
a? ag
But, by L'Hopital's rule, we know that =2/ (—a%oo2 — 20— 1) =0, so we have that
0
1
0= 1
CEle

nlm

02

nim

C2

nim

e~"/% and
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But, this is only true if C%, =1, which tells us that ¢ (1,0, ¢) was already normalized.

Problem 7.26

Show that an electron in the n = 2, [ = 1 state of hydrogen is most likely to be found at r = 4ay.

Generally, ¥ is defined by ¥nim (7,0, ) = Crim B (1) O (0) P, (¢) = Crim Rt (1) Yim (0, ¢). We also know that:

[ v

e’} T 27
/ / P*r? sin @ dpddr
0 0 0

1

I
—

And, we know that

1 r
Ry (1) = o3 a—oe”/ga“
0

3
Yio (0, ¢) \/Ecose
3 . +id
Yie1 (0,0) = =+ 8—sm06
T

If we recognize that Ro; () does not depend at all upon either 6 or ¢, and that neither Y1 (6, ¢) nor Y111 (6, ¢) depend on r, we
can rewrite the integral from above:

[e’e) e 27
/ / P Yr?sin @ dodddr = 1
0 0 0

o] T 27
/ / C31mBRo1 Y1 Crtm R21 Y r? sin 0 ddfdr = 1
0
o) 2
/ / Co1mCo1m B3, Y15, Yir? sin 0 dodfdr = 1
0
] s 27
C31mC21m / R3,r?dr / Y Yimsin0dodd = 1
0 0 0

Strictly speaking, the next two steps are not required. Y (6, ¢) will only scale the value of the function at r = 4ag, but it will not
change that » = 4ag is where the maximal occurs. However, smce it is instructive to see these integrals, and since the work has
already been done, they are included. We can now find [ [; Ylelm sin § d¢df for both m = 0 and m = £1. For m = 0, we
have:

2m
/ Y2 sin 0 dpdf
0 Jo
™ 2T 3 2
/ / {/—rcosf | sinfdodf
o Jo 47

™ 2m 3
/ / — cos? O sin 0 dpdf
27
= / / cos? 0 sin 0 dédo

27
= — cos 9s1n9d9/ do
0

2w
/ Y7, Yao sin 0 dpdf
0 0

471'
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| v

(2m) / cos? fsin 6§ df
0

/ cos? fsin 0 dO
0

1 T
( cos® 6 )
3 0=0

—(=1-1)

3

POl DWW
—

For m = £1 we have:
™ 27 T 27 3 ) 3 .
/ / Yy, Yirsinfdpdd = / / +1/—sinfe | [ £1/—sinfe™ | sin6 depdd
o Jo o Jo 8T 81
T 27 3 2
= / / <:|:\ [ — sin 9) (e_i‘i’) (ei‘i’) sin 0 d¢df
0o Jo 8w
™ 27 3 ) )
= / / —sin® 0 (e7"T?) depdo
o Jo 87
3 T 27
= — / / sin® 0 dodf
8t Jo Jo

3 T 5 2w
= sin® 6 df do
0

87 Jo
= —(2n) / sin® 6 df
87T 0
3 9 .
= = (1 —cos 9)sm9d6
4 Jo
3 9. .
= - sm0d9 cos” 0sin 0 df
4 \Jo 0
= 3<—COS(9—(—COS 0))
4 6=0
1, 4 T
= f(cos 073(1089)
4 0=0
= i ((cos?’w—?)cosw) — (00830— SCOSO))
= i(005377—3c0s7r—(30530+30050)
1
= Z(—1—3(—1)—1+3(1))
1
= 1

So, we now know that Y7, (6,¢) = 1. So we're left with:
C;1mc21m/ R%lrzdr = 1
0

However, looking ahead, we know that we will be finding where the derivative of some function is zero, and a constant factor will
not change where the derivative is zero, just the magnitude of the function at that point. So, we have fooo C31y Co1m B3 r2dr = 1,
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which looks like a probability distribution integration, of the form [ P (r)dr = 1. So, let's let P (r)dr = C3y,,Co1m R r?dr,
so P (r) = C3y,,C21mR%,7?, and the maximum probability will occur at ‘;—1: = 0. This is:

d

ar (r) 0
d * 2
d (C21m021mR217“) = 0

Il
o

53
=
3
S
=
3
Sla
~/
N
)
=) ‘
S S
ow
S
Ch‘
3
~
(]
§
~
[ V]
ﬁl\'J
~
Il
(e}

r-e ) =0
1
Cs mC m| ——— 7=4 _> e*T/ao _’_47,.367‘/(10) - 0
21mL21 <2aom> ( o
2
1 r
Co1mCotm | ——— | rie"/® (—+4> = 0
21m 21 <2a0 6a8) ”

Since e~"/9% is never zero, and since = 0 is impossible because I = 1 so the electron must have angular momentum which would
not happen at » = 0, we have:

——4+4 = 0
ag
oy
ag
T —4 (—ayp)
r = 4CLO

Problem 7.29

If a classical system does not have a constant charge-to-mass ratio throughout the system, the magnetic moment can
be written 0
=g—1L
M 92]\/[
where @ is the total charge, M is the total mass, and g # 1.

Part a

Show that g = 2 for a solid cylinder (I = 1M R?) that spins about its axis and has a uniform charge on its cylindrical

)
surface.

We know that p = iA. We also know, in this case, that the area of the loop about which the charge is circulating is A = mR2.
To find i, we must recognize that current is equal to charge times the frequency, or i = Qf, that f = 5%, and that L = Jw. This
gives us:

w = 1A
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So, g = 2.

Part b

QfrR?

Qiﬂ'RQ
2

1 /LY ,
Qz(r)R

1/ L )
% (317 7

L
Q(M)
Q
sz

Show that g = 2.5 for a solid sphere (I = 2M R?/5) that has a ring of charge on the surface at the equator, as shown

in Figure 7-33 [Tipler & Llewellyn, p. 309].

In this case, practically everything is identical to part (a) except for the moment of inertia. So we have:

So, g=15=25.

Problem 7.39

Consider a system of two electrons, each with l =1 and s = =

Part a

What are the possible values of the quantum number for the total orbital angular momentum L=1L,+Lsy?

The quantum number, L, for L has possible values 11 + o, 01 + 1o — 1,...,|l1 — I3
momentum quantum numbers for El and EQ respectively. These are both 1, so, we have that L =2, L =1, or L = 0.

1
3-

, where [ and [, are the total orbital angular
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Part b

What are the possible values of the quantum number S for the total spin S = S + 9,7?

Similarly to the above, we have quantum numbers, s; and s, equal to % so we have the total spin quantum number as S =1 or

S=0.
Part c
Using the results of parts (a) and (b), find the possible quantum numbers j for the combination J = L + S.

The possible quantum numbers for j can be either j = L+ S or j = |L — S|. Since we have multiple possibilities for L and S,
we try each combination to find all possible quantum numbers. So, for j we have: 2+1=3,2-1=1,2+0=2,2-0=2,
141=2,1-1=0,140=1,1-0=0,0+1=1,]0-1=1,0+40=0,0—0=0. So, j can equal: 3,2, 1, or 0.

Part d
What are the possible quantum numbers j; and js for the total angular momentum of each particle?

Since [y =l =1 and 51 = 59 = % both j; and jo have the same possible quantum numbers. These are given, as in part (c), by
j1 =11 +s10rj1 =|l1 —s1]. So, we get the possible quantum numbers for j; = j5 to be 1.5 or 0.5.

Part e

Use the results of part (d) to calculate the possible values of j from the combinations of j; and j>. Are these the same
as in part (c)?

We know that that the quantum number, j, for J has possible values ji + jo, j1 + jo — 1,.. ., |71 — J2|, So, using the results from
part (d), we see that the possible values for j are the integers between 1.5+ 1.5 =3 and 1.5 — 1.5 = 0, or between 1.5 + 0.5 = 2
and 1.5 — 0.5 =1, or between 0.5+ 1.5 =2 and |0.5 — 1.5| = 1, or between 0.5+ 0.5 =1 and 0.5 — 0.5 = 0. So, all the possible
values are: 3, 2, 1, and 0. This is the same as in part (c).

Problem 7.44

Write the electron configuration of the following elements:

Part a

Carbon

Carbon has Z = 6, so its electron configuration is 1522s522p2.

Part b

Oxygen

Oxygen has Z = 8, so its electron configuration is 1522s522p?.
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Part c

Argon

Argon has Z = 18, so its electron configuration is 1522522p%3523pS.

Problem 7.73

In the anomalous Zeeman effect, the external magnetic field is much weaker than the internal field seen by the electron
as a result of its orbital motion. In the vector model (Figure 7-30 [www.whfreeman.com/tiplermodernphysicsbe]) the
vectors L and S precess rapidly around J because of the internal field and fprecesses slowly around the external field.
The energy splitting is found by first calculating the component of the magnetic moment 1 in the direction of J and
then finding the component of /i, in the direction of B.

Part a

Show that py

We can substitute ji = —9&fnl | —9sipS

_ [inf
- J

can be written

Hy = —

J = E+§, and we get:

Part b

From J2 = (

This is, easily:

%(L2+252+3§~E)

—EB (gLE+gs§), where g, = 1 and gs = 2 ([Tipler & Llewellyn, p. 287]), and

f—&-g)(E—i—g) showthatg-f:%(JQ—L2—Sz).
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J2
J2
J2
(J2 - L* - S?)

DO | =

Part c

Substitute your result in part (b) into that of part (a) to obtain

Hy = —

This becomes:

L-L+L-S+S-L+S§-§S
= L-L+S-L+S-L+S-S
= [?+2§8. [+ 52
_ 3.7

B (3% + 5% - L?)

2hJ

(L2 12582+ 3L S)

ry = hJ

M (L2+282+3 (J? L2—S2)>

= 2M(z 2 +45% +3J% - 3L - 35?)
2hJ(?,J? L? 4+ 5%)

Part d

Multiply your result by J./J to obtain

This becomes:

J?2 4+ 82— L2\ J,
“z__”3<1+2j2)h
Jz MBJZ 2 2 2

2hJ

B (3J% - L* + §?) (

_ _ppd. (BIP-L*+5?
- 2.J2

h

22 J2_[245°
- THs (2J2 T
— <1 A Vi o
2.7
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