
Wayne Witzke ProblemSet #8 PHY 361

Problem 1

[30 pts] While the spins of the two electrons in a hydrogen molecule must be antiparallel in the ground state, there is
a degeneracy due to the spin of the two protons, s1 = 1

2 and s2 = 1
2 .

Part a

Why doesn’t the Pauli exclusion principle apply to the protons? In other words, why can the two protons have arbitrary
ms, while the electrons must occupy different states?

The Pauli exclusion principle does not apply to the protons in a Hydrogen molecule because the protons are not shared by the
atoms in the molecule, while the electrons are shared and inhabit the same molecular shell in the ground state (and so must have
different spins).

Part b

List the possible combinations of quantum numbers (ms1,ms2). What is the degeneracy of the ground state?

Since protons have spin 1
2 , we have ms = ± 1

2 . So, the possible combinations of quantum numbers are:
(

1
2 ,

1
2

)
,
(

1
2 ,−

1
2

)
,
(
− 1

2 ,
1
2

)
and

(
− 1

2 ,−
1
2

)
. The degeneracy of the ground state is 4.

Part c

Show how the proton spins s1 and s2 couple to form a singlet and triplet. List the possible quantum numbers (s,ms)
of the total spin of the protons ~s = ~s1 + ~s2, and find the degeneracy gs for each value of the total spin s. This explains
the names “singlet” and “triplet.”

So, the possible proton spins couple to give s = s1 + s2, s1 + s2 − 1, . . . , |s1 − s2|, and have possible values for ms = ms1 +ms2

for each combination of ms1 and ms2. So the s couplings are s = 1
2 + 1

2 ,
∣∣ 1
2 −

1
2

∣∣ = 1, 0, and ms = 1
2 + 1

2 ,
1
2 −

1
2 , −

1
2 + 1

2 ,
− 1

2 −
1
2 = 1, 0, 0, −1. The possible quantum number pairs, (s,ms) are(1, 1), (1, 0), (1,−1), and (0, 0). This is because you can’t

have s = 0 with an ms value of anything but 0, but it is possible to find a vector ~s with s = 1, but ms = 0. So, we have a triplet
with coupled spins ms = −1, 0, 1 and a singlet with coupled spin s = 0. The degeneracy for the triplet is g1 = 3 for the triplet,
since it has three coupled spin states, and g0 = 1 for the singlet since it has only one spin state.

Part d

Ortho-hydrogen (spins aligned, triplet) is 15 meV higher in energy than the ground state of para-hydrogen E = 0 (spins
anti-parallel, singlet). For which value of s is it possible to have (ms1 = ms2) = 1

2 (spin aligned)?

The only value of s for which it is possible to have spin ms1 = ms2 = 1
2 is s = 1.

Part e

Using gs and fMB = e−ε/kT , calculate and plot the fraction of ortho- and para-hydrogen as a function of termperature
from T = 0K to T = 300K.
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We know that gs should be constant for s = 0 and s = 1, and we have that for para-hydrogen fMB = A (T ) e−0/kT = 1,
and for ortho-hydrogen fMB = A (T ) e−15/kT . We also know that ns (T,Es) = gsfMB (T,Es) and that for properly normalized
distributions, n0 (T,E0) = n0 (T, 0) and n1 (T,E1) = n1 (T, 15), 1 = n0 (T, 0) + n1 (T, 15). So we have:

1 = n0 (T, 0) + n1 (T, 15)
1 = A (T ) + 3A (T ) e−15/kT

1 = A (T )
(
1 + 3e−15/kT

)
1(

1 + 3e−15/kT
) = A (T )

So the fraction fo molecules for s = 0 and s = 1 is n0 (T ) = 1

(1+3e−15/kT ) and n1 (T ) = 3 1

(1+3e−15/kT )e
−15/kT . Plotting these,

we get figure 1.

Figure 1: The fraction of para and ortho hydrogen from 0 K to 300 K.

Part f

Calculate and plot the average energy per molecule as a function of temperature.
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Since the molecules in the ground state have zero energy, the average energy per molecule is just the contribution to energy from
the ortho-hydrogen, 15 meV, times the fraction of the molecules in that state, which is:

〈ε〉 (T ) = 15n1 (T )

= (15) (3)
1

1 + 3e−15/kT
e−15/kT

Plotting this, we get figure 2.

Figure 2: The average energy of hydrogen from 0 K to 300 K.

Problem 2

[30 pts] Helium atoms have total spin s = 0, following the Bose-Einstein distribution

fBE (ε) =
1

eαeε/kT − 1

Page 3



Wayne Witzke ProblemSet #8 PHY 361

Part a

Starting with hdnx = dpxdx where dnx is the number of available states in the range dpx of momentum and dx in space
in the x-direction, show that dn = 4πp2dpV/h3 in three dimensions, where V is the volume and dn = dnxdnydnz.

While it does make sense to say that hdnx = dpxdx since we are dealing with infinitesimals, it will be easier to show how these
equations balance if we use hd2nx = dpxdx, d6n = d2nxd

2nyd
2nz, and d6n = 4πp2d3pV/h3. So, if hd2nx = dpxdx, then we

have hd2ny = dpydy and hd2nz = dpzdz. So we can get d6n = d2nxd
2nyd

2nz by:

d6n = d2nxd
2nyd

2nz

= d2nxd
2nyd

2nz

= hd2nxhd
2nyhd

2nz

= dpxdx dpydy dpzdz

= d3pd3x

But, we know that we can integrate, getting:
ˆ ˆ ˆ

d6n =
ˆ ˆ ˆ

d3pd3x

d3n = d3pV

Also, we have that the density of states for momentum is equal to the number of states in the sphere defined by p = 4
3πr

3, where
r is the radius of the space in three components, px, py and pz. So, we have d3p = 4πr2d3r. This gives us:

d3n = 4πr2d3rV/h3

However, since p = r =
√
p2
x + p2

y + p2
z and d3r = dpxdpydpz = d3p, we get:

d3n = 4πp2d3pV/h3

Part b

Calculate the degeneracy g (ε) of kinetic energy states ε = p2/2m, defined by dn = g (ε) dε.

So, we have that p =
√
ε2m, and dp =

√
2m 1

2 (ε)−
1
2 dε. This gives us

4πp2dpV/h3 = g (ε) dε

4πεm
√

2mε−
1
2V/h3dε = g (ε) dε

So, g(ε) = 4πm
√

2mε
1
2V/h3

Part c

Insert g (ε) and f (ε) into N =
´∞
0
dεg (ε) fBE (ε) to get a formula for the N , the total number of atoms. Show that

the number density is
N

V
=

2π (2mkT )
3
2

h3
I (α)

where

I (α) =
ˆ ∞

0

√
xdx

eα+x − 1

Page 4



Wayne Witzke ProblemSet #8 PHY 361

Substituting g (ε) and f (ε) into N =
´∞
0
dεg (ε) fBE (ε) gives us:

N =
ˆ ∞

0

dε
4πV mε

1
2
√

2m
h3

1
eαeε/kT − 1

For N
V , where x = ε

kT (so ε = xkT and dε = dxkT ), then, we get:

N

V
=
ˆ ∞

0

dε
4πmε

1
2
√

2m
h3

1
eαeε/kT − 1

=
ˆ ∞

0

dε
4πm
√
kTx
√

2m
h3

1
eαex − 1

=
ˆ ∞

0

dε
4πm
√
kTx
√

2m
h3

1
eα+x − 1

=
ˆ ∞

0

dxkT
4πm
√
kTx
√

2m
h3

1
eα+x − 1

=
ˆ ∞

0

2π (2mkT )
3
2

h3

√
xdx

eα+x − 1

=
2π (2mkT )

3
2

h3

ˆ ∞
0

√
xdx

eα+x − 1

=
2π (2mkT )

3
2

h3
I (α)

Part d

Plot the integrand of I (α) for α = 0, 0.5, and 1 to show that the integral decreases as a function of α. Circle the
singularity in the integrand for α = 0. Numerically, I (0) = 2.315, I (0.5) = 0.7183, and I (1) = 0.3797.

Plotting these functions, we get the graph in figure 3. The singularity in the integrand occurs at x = 0 for α = 0.

Part e

In the above formula, α changes as a function of temperature T to keep the number density N/V fixed at the
experimental density of liquid helium, ρ = 0.146 g/mL at Tλ. Calculate the temperature corresponding to α =
0, 0.5, and 1.

We have

N

V
=

2π (2mkT )
3
2

h3
I (α)

0.146 g/mL =
2π (2mkT )

3
2

h3
I (α)

h30.146 g/mL

2π (2mk)
3
2 I (α)

= T
3
2

(
h30.146 g/mL

2π (2mk)
3
2 I (α)

) 2
3

= T

h2 (0.146 g/mL)
2
3

(2π)
2
3 (2mk) I (α)

2
3

= T

Substituting in for α for T (α), we get T (0) ≈ 3.1K, T (0.5) ≈ 6.9K, T (1) ≈ 10.5K.
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Figure 3: Plot of
√
x

eα+x−1 for α = 0, 0.5, 1

Part f

Because of the singularity at α = 0, the value of α must remain positive, even as T drops below the critical temperature
Tλ (when α = 0). Therefore, the integral I (α) is a constant for T < Tλ, and the density of the “normal” fluid helium
drops below the critical temperature. The rest of the atoms condense into the ground state to form a “superfluid”
component with zero viscosity. Plot the density of the normal and superfluid components of Helium II as a function of
T below the lambda point Tλ, keeping the total density constant. Note: the experimental value for the critical point
is Tλ = 2.17K.

If the density, ρ = 0.146 g/mL remains constant, we have, where Nn
V is the density of the normal helium and Ns

V is the density of
the superfluid:

N

V
= 2.20× 1028particles/m3 =

Nn
V

+
Ns
V

2.20× 1028particles/m3 − Nn
V

=
Ns
V

2.20× 1028particles/m3 − 2π (2mkT )
3
2

h3
I (0) =

Ns
V
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2.20× 1028particles/m3 − 2π (2mkT )
3
2

h3
(2.315) =

Ns
V

This yields the graph in figure 4 for Nn
V and Ns

V .

Figure 4: Plot of the density of normal to superfluid hydrogen as a function of temperature

Problem 3

[30 pts] A neutron star occurs when a star of up to 1.5 solar masses collapses under its own weight. Protons in the
nuclei decay into neutrons, which have no electrical repulsion, and the only thing which prevents further collapse into
a black hole is the Fermi repulsion of the neutrons, which have spin

(
s = 1

2

)
. They follow the Fermi-Dirac distribution

fFD (ε) =
1

eαeε/kT + 1

Part a

Calculate the total number of neutrons created from a star 1.5 times the mass of the sun, msun = 1.9891 × 1030kg.
(think big)
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Here, we just have

N =
msun

mneutron

=
1.5 ∗ 1.98892× 1030 kg
1.67492729× 10=27kg

= 1.78119971× 1057neutrons

Part b

As in problem #2, show that the density of states is dN = 8πp2dpV/h3. The extra factor of 2 comes fromm the two
spin states of the neutron. In the zero temperature limit, each state is filled with one neutron, and all of the states are
filled up to the maximum (Fermi) momentum pF . Calculate the total number of neutrons N =

´ pF
0

dN in a spherical
volume (star) of radius R.

Here, we can use hdN = dpdx. This gives us that hd6N = d3pd3x. Integrating, we get:
ˆ ˆ ˆ

d6N =
ˆ ˆ ˆ

d3pd3x

d3N = d3pV

Also, we have that the density of states for momentum is equal to the number of states in the sphere defined by p = 4
3πr

3, where
r is the radius of the space in three components, px, py and pz. So, we have d3p = 4πr2d3r. This gives us:

d3nN = 4πr2d3rV/h3

However, since r =
√
p2
x + p2

y + p2
z = p and d3r = dpxdpydpz = d3p, we get:

d3N = 4πp2d3pV/h3

Of course, if each of these momentum and spacial states can have one of two spins, that doubles hte number of states, so that we
get:

d3N = 8πp2d3pV/h3

If we have a spherical volume of radius R, the total number of neutrons, between momentums 0 and pF , is:

N =
ˆ pF

0

8πp2dpV/h3

=
ˆ pF

0

8πp2dp
4
3
πR3/h3

=
32
3
π2R3

h3

ˆ pF

0

p2dp

=
32
3
π2R3

h3

1
3
(
p3
) ∣∣∣∣pF

0

=
32
9
π2R3p3

F

h3
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Part c

Calculate the weighted average kinetic energy of each neutron as a function of pF , using

〈Ekin〉 =

´ pF
0

dN p2

2Mn´ pF
0

dN
=

´ pF
0

p2dp p2

2Mn´ pF
0

p2dp

Starting with 〈Ekin〉 =
´ pF
0 p2dp p2

2Mn´ pF
0 p2dp

, we get:

〈Ekin〉 =

´ pF
0

p2dp p2

2Mn´ pF
0

p2dp

=
1

2Mn

´ pF
0

p4dp

1
3p

3

∣∣∣∣pF
0

=

1
2Mn

1
5p

5

∣∣∣∣pF
0

1
3p

3
F

=
1

2Mn

1
5p

5
F

1
3p

3
F

=
1

2Mn

3
5
p2
F

Part d

Substitute pF from part (b) into part (c) to show that the average kinetic energy of a neutron is

〈Ekin〉 =
3
10

~2

MnR2

(
9πN

4

)2/3

From part (b) we have N = 32
9
π2R3p3F
h3 . Solving for pF , we get:

N =
32
9
π2R3p3

F

h3

9h3N

32
= π2R3p3

F

9h3N

32π2R3
= p3

F(
9h3N

32π2R3

) 1
3

= pF

Substituting this back into 〈Ekin〉 = 1
2Mn

3
5p

2
F , we get:

〈Ekin〉 =
1

2Mn

3
5
p2
F

=
1

2Mn

3
5

((
9h3N

32π2R3

) 1
3
)2

=
1

2Mn

3
5

(
9h3N

32π2R3

) 2
3
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=
1

2Mn

3
5

(
81h6N2

322π4R6

) 1
3

=
3
10

h2

MnR2

(
81N2

322π4

) 1
3

=
3
10

(2π~)2

MnR2

(
81N2

322π4

) 1
3

=
3
10

~2

MnR2
4π2

(
81N2

322π4

) 1
3

=
3
10

~2

MnR2

(
64 ∗ 81N2π6

322π4

) 1
3

=
3
10

~2

MnR2

(
81N2π2

16

) 1
3

=
3
10

~2

MnR2

(
92N2π2

42

) 1
3

=
3
10

~2

MnR2

(
9Nπ

4

) 2
3

Part e

The average potential energy from gravitational attraction is

〈Epot〉 = −3
5
GNM2

n

R

Minimize the total energy 〈Etot〉 = 〈Ekin〉+ 〈Epot〉 as a function of R to show that the equilibrium radius of the star
is

R =
~2 (9π/4)2/3

GM3
nN

1/3

Evaluate this expression numerically (the answer is close to the measured value of 12 km).

If the total energy is 〈Etot〉 = 〈Ekin〉+ 〈Epot〉, then we have:

〈Etot〉 = 〈Ekin〉+ 〈Epot〉

=
3
10

~2

MnR2

(
9Nπ

4

) 2
3

− 3
5
GNM2

n

R

The minimum (or maximum) energy at a radius R is going to occur at a point when the derivative relative to R is equal to zero.
So, differentiating we get:

d

dR
〈Etot〉 =

d

dR

(
3
10

~2

MnR2

(
9Nπ

4

) 2
3
)
− d

dR

(
3
5
GNM2

n

R

)

=
3
10

~2

Mn

(
9Nπ

4

) 2
3 d

dR

(
1
R2

)
− 3

5
GNM2

n

d

dR

(
1
R

)
=

3
10

~2

Mn

(
9Nπ

4

) 2
3

(−2)
1
R3

+
3
5
GNM2

n

1
R2
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Setting this equal to zero, we get:

0 =
3
10

~2

Mn

(
9Nπ

4

) 2
3

(−2)
1
R3

+
3
5
GNM2

n

1
R2

3
10

~2

Mn

(
9Nπ

4

) 2
3

(2)
1
R3

=
3
5
GNM2

n

1
R2

~2

Mn

(
9Nπ

4

) 2
3

= GNM2
nR

~2

Mn

(
9Nπ

4

) 2
3

GNM2
n

= R

~2
(

9π
4

) 2
3

GN1/3M3
n

= R

However, this is only a minimum if the function is concave up at R. So, taking the second derivative, we get:

d2

dR2
〈Etot〉 =

d2

dR2

(
3
10

~2

MnR2

(
9Nπ

4

) 2
3
)
− d2

dR2

(
3
5
GNM2

n

R

)

=
3
10

~2

Mn

(
9Nπ

4

) 2
3 d2

dR2

(
1
R2

)
− 3

5
GNM2

n

d2

dR2

(
1
R

)
=

3
10

~2

Mn

(
9Nπ

4

) 2
3

(−2)
d

dR

(
1
R3

)
+

3
5
GNM2

n

d

dR

(
1
R2

)
=

3
10

~2

Mn

(
9Nπ

4

) 2
3

(6)
1
R4
− 6

5
GNM2

n

1
R3

Substituting in our minimum, we get:

d2

dR2
〈Etot〉 =

3
10

~2

Mn

(
9Nπ

4

) 2
3

(6)
1
R4
− 6

5
GNM2

n

1
R3

=
3
10

~2

Mn

(
9Nπ

4

) 2
3 (6)(

~2( 9π
4 )

2
3

GN1/3M3
n

)4 −
6
5GNM

2
n(

~2( 9π
4 )

2
3

GN1/3M3
n

)3

=
3
10

~2

Mn

(
9Nπ

4

) 2
3 (6)

~8( 9π
4 )

8
3

G4N4/3M12
n

−
6
5GNM

2
n

~6( 9π
4 )2

G3NM9
n

=
3
10

~2

Mn

(
9Nπ

4

) 2
3 G8N4/3M12

n (6)

~8
(

9π
4

) 8
3

−
6
5GNM

2
nG

3NM9
n

~6
(

9π
4

)2
=

3
10N

2/3G4N4/3M11
n (6)

~6
(

9π
4

)2 −
6
5GNM

2
nG

3NM9
n

~6
(

9π
4

)2
=

1

~6
(

9π
4

)2 ( 3
10
N2G4M11

n (6)− 6
5
GNM2

nG
3NM9

n

)
=

1

~6
(

9π
4

)2 (9
5
N2G4M11

n −
6
5
G4N2M11

n

)
=

1

~6
(

9π
4

)2 (3
5
N2G4M11

n

)
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Since we know that ~, π, N , G, and Mn are all positive values, the value of the second derivative of the function at R is positive,
so the function is concave up, hense R, as calculated above, is a minimum. The value of R, using N calculated in part (a), is
10.78 km.

Problem 8.11

From the absorption spectrum it is determined that about one out of 106 hydrogen atoms in a certain star is in the
first excited state, 10.2 eV above the ground state (other excited states can be neglected). What is the temperature
of the star? (Take the ratio of statistical weights to be 4, as in Example 8-2, [Tipler & Llewellyn, p. 318].)

If one out of 106 hydrogen atoms in a star is in the first excited state, then the ratio of atoms in the first excited state (n2) to
atoms in the ground state (n1), is n2

n1
= 1

106 = 10−6. If the ratio of the degeneracies of the two states is 4, that is g2
g1

= 4, then
we can calculate the temperature by substitution into:

n2

n1
=

Ag2e
−E2/kT

Ag1e−E1/kT

10−6 = 4
e−E2/kT

e−E1/kT

10−6 = 4e−E2/kT+E1/kT

10−6 = 4e(−E2+E1)/kT

10−6

4
= e(−E2+E1)/kT

ln
(

10−6

4

)
=

(−E2 + E1)
kT

T =
(−E2 + E1)

k ln
(

10−6

4

)
T =

(−10.2 eV + 0)

k ln
(

10−6

4

)
T =

(−10.2 eV)

k ln
(

10−6

4

)
T = 7786.3K

Problem 8.12

The first excited rotational energy state of the H2 molecule (g2 = 3) is about 4×10−3eV above the lowest energy state
(g1 = 1). What is the ratio of the numbers of molecules in these two states at room temperature (300 K)?

Similar to problem 8.11, we can use n2
n1

= Ag2e
−E2/kT

Ag1e−E1/kT
to calculate this ratio. This gives us:

n2

n1
=

Ag2e
−E2/kT

Ag1e−E1/kT

= 3
e−E2/kT

e−E1/kT

= 3e(−E2+E1)/kT

= 3e(−4×10−3eV+0)/k(300K)

= 2.57
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Problem 8.23

A container at 300 K contains H2 gas at a pressure of one atmosphere. At this temperature H2 obeys the Boltzmann
distribution. To what temperature must H2 gas be cooled before quantum effects become important and the use of
the Boltzmann distribution is no longer appropriate? (Hint: Equate the de Broglie wavelength at the average energy
to the average spacing between molecules, using the ideal gas law to compute the density.)

Following the outline in [Tipler & Llewellyn, p332], we start with the condition that when λ � 〈d〉, then we can ignore quantum
effects. But, we have that:

λ =
h

p

=
h√

2mEk

=
h√

2m (3kT/2)

=
h√

3kmT

And we know that the average separation between particles is 〈d〉 = (V/N)1/3. So, if h√
3kmT

�
(
V
N

)1/3
, or when N

V
h3

(3kmT )3/2
� 1,

we can no longer ignore quantum effects. The problem, however, seems to imply that there is some critical temperature when
λ = 〈d〉. So, using this, we have that:

N

V

h3

(3kmT )3/2
= 1

N

V

h3

(3km)3/2
= T 3/2

(
N

V

)2/3
h

2

3km
= T

To solve this, we need to know the initial N/V , and since both N and V are constant. But, this is just PV = NkT , or P
kT = N

V .
Substituting this in, we get: (

P

kTi

)2/3
h

2

3km
= Tf

Where Ti is the initial temperature, 300 K, and Tf is the final temperature. So, we get that:(
1 atm
k300K

)2/3
h

2

3km
= Tf

Or, that quantum effects become important around Tf ≈ 0.267K.

Problem 8.26

Like 4He, the most common form of neon, 20Ne, is a rare gas and the 20Ne atoms have zero spin and hense are
bosons. But, unlike helium, neon does not become superfluid at low temperatures. Show that this is to be expected
by computing neon’s critical temperature and comparing it with the element’s freezing point of 24.5 K.
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The critical temperature for neon can be computed by:

Tc =
h2

2mk

[
N

2π (2.315)V

]2/3

Noting that N
V is just the density of liquid neon, or 1.207 g/mL. This gives us that Tc = 0.869 K. This is significantly lower than

the freezing point of neon.
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