University of Kentucky, Physics 361
 Solution to Problem Set \#8

1. a) The H_{2} molecule consists of two hydrogen atoms bound by their shared electrons. The two electron wavefunctions span the entire molecule and have the same spatial wavefunction; therefore they must have opposite spin by the Pauli exclusion principle. However, the protons can be treated like point particles, whose wavefunctions do not overlap, and thus can have any combination of spins.
b) The protons has spin $s_{1}=\frac{1}{2}$ and $s_{2}=\frac{1}{2}$. Taking all combinations of $m_{s_{1}}= \pm \frac{1}{2}$ and $m_{s_{2}}= \pm \frac{1}{2}$: $\left(m_{s_{1}}, m_{s_{2}}\right)=\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2},-\frac{1}{2}\right),\left(-\frac{1}{2}, \frac{1}{2}\right),\left(-\frac{1}{2},-\frac{1}{2}\right)$.
c) The number of substates listed above is 4 .
d) To calculate the quantum numbers for $\vec{S}=\vec{S}_{1}+\vec{S}_{2}$, the z-component of total spin is $S_{z}=S_{z 1}+S_{z 2}$ or $m_{s} \hbar=m_{s_{1}} \hbar+m_{s_{2}} \hbar$, so $m_{s}=1,0,0,-1$, respectively, for the above states. The total spin is also quantized: $S^{2}=\hbar^{2} s(s+1)$, and for each value of $s, m_{s}=-s, \ldots, s$ in steps of 1 . Thus three substates $m_{s}=1,0,-1$ belong to $s=1$, the triplet, and the remaining state $m_{s}=0$ must have $s=0$, the singlet. Note: the $(s=0, m=0)$ and $(s=1, m=0)$ states are actually two independent superpositions of the above ($m_{s_{1}}=\frac{1}{2}, m_{s_{2}}=-\frac{1}{2}$) and ($m_{s_{1}}=-\frac{1}{2}, m_{s_{2}}=\frac{1}{2}$) states. In every case, $s_{1}=s_{2}=\frac{1}{2}$.
Looking at it another way, the total spin quantum number can range from $s=\left|s_{1}-s_{2}\right|$ to $s=s_{1}+s_{2}$ in steps of one. Thus there are two s-states: $s=\frac{1}{2}-\frac{1}{2}=0$ and $s=\frac{1}{2}-\frac{1}{2}=1$, with the m-substates listed above.
e) The $m=1,-1$ states have $m_{s_{1}}=m_{s_{2}}$, or spins aligned, thus the tripet $s=1$ states are orthohydrogen. Even $(s=1, m=0)$ state behaves as if the spins were aligned. The singlet state $s=0$ is the lower energy parahydrogen. The degeneracies of these states are $g_{1}=3$ and $g_{0}=1$.
f) The number of molecules in each state $n_{i}=g_{i} f\left(\epsilon_{i}\right)=A g_{i} e^{-\epsilon_{i} / k T}$ where A is the normalization constant. Thus $n_{0}=A e^{-0 / k T}=A$ and $n_{1}=3 A e^{-\delta / k T}$, where $\delta=15 \mathrm{meV}$ and the total number of molecules is $n=A\left(1+3 e^{-\delta / k T}\right)$. The fractions or ortho- and para-hydrogen are:

$$
f_{0} \equiv \frac{n_{0}}{n}=\frac{1}{1+3 e^{-\delta / k T}} \quad \text { and } \quad f_{1} \equiv \frac{n_{1}}{n}=\frac{3 e^{-\delta / k T}}{1+3 e^{-\delta / k T}} .
$$

g) The average energy is

$$
\langle\epsilon\rangle=\frac{\sum_{i} \epsilon_{i} g_{i} f_{i}}{\sum_{i} g_{i} f_{i}}=\frac{0 n_{0}+\delta n_{1}}{n_{0}+n_{1}}=\frac{3 \delta e^{-\delta / k T}}{1+3 e^{-\delta / k T}}=f_{1} \delta .
$$

\#2 a) $d N=d N_{x} \cdot d N_{g} \cdot d N_{z}=d^{3} p \cdot d^{3} x / h^{3}=4 \pi p^{2} d p \cdot V / h^{3}$
(integrating over angles of \vec{p}, and over space).
b)

$$
\begin{aligned}
\varepsilon= & p^{2} / 2 m \quad d \varepsilon=2 p d p / 2 m \\
d N= & 4 \pi V / h^{3} \cdot p \cdot p d p=4 \pi V / h^{3} \cdot \sqrt{2 m \varepsilon} \cdot m d \varepsilon=g(\varepsilon) d \varepsilon . \\
& g(\varepsilon)=4 \pi V / h^{3} \cdot \sqrt{2 m^{3}} \varepsilon^{1 / 2} d \varepsilon .
\end{aligned}
$$

c) $N=\int_{0}^{\infty} g(\varepsilon) d \varepsilon \cdot f(\varepsilon)=\int_{0}^{\infty} 4 \pi V / n^{3} \cdot \sqrt{2 w^{3}} \frac{\varepsilon^{1 / 2} d \varepsilon}{e^{2} e^{\varepsilon / k T}-1}$

Let $x=\varepsilon / k T \quad d x=\frac{d \varepsilon}{k T}$

$$
\begin{aligned}
& N=\int_{x=0}^{\infty} 4 \pi / / h^{3} \cdot \sqrt{2 m^{3}(k T)^{3}} \frac{\sqrt{x} d x}{e^{\alpha+x}-1} \\
& N=\frac{2 \pi}{h^{3}}(2 m k T)^{3 / 2} I(\alpha) \quad \text { where } I(\alpha)=\int_{0}^{\infty} \frac{\sqrt{x} d x}{e^{\alpha+x}-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { e) } \frac{N}{V}=\frac{\rho N_{A}}{A}=\frac{2 \pi}{n^{3}}(2 m k T)^{3 / 2} I(x) \text {, } \quad \frac{\sqrt{x}}{e^{\alpha+\varphi}-1} \\
& T=\left(\frac{\rho N_{1} h^{3}}{2 \pi A \cdot I(\alpha)}\right)^{2 / 3} \frac{1}{2 m k}
\end{aligned}
$$

$$
\begin{aligned}
& =2.82 K(\alpha=0), 6.15 K(\alpha=0.5), 9.41 K(\alpha=1) \\
& T_{\lambda}=2.8 \mathrm{~K}
\end{aligned}
$$

f) $\frac{N}{N_{\lambda}}=\frac{\frac{2 \pi}{h^{3}} V(2 m k T)^{3 / 2} I(0)}{2 \pi / h^{3} V\left(2 m k T_{\lambda}\right)^{3 / 2} I(0)}=\left(\frac{T}{T_{\lambda}}\right)^{3 / 2}$ if $T<T_{\lambda}$
$\frac{N_{0}}{N_{\lambda}}=1-\frac{N}{N_{\lambda}}=1-\left(\frac{T}{T_{\lambda}}\right)^{3 / 2} \quad$ ground sleate

I(α) compensades for increasing temperatov, keeping the \# of partides fivel.
3. a) $N=\frac{1.5 \mathrm{~m}}{m_{n}}=\frac{1.5 \times 1.9891 \times 10^{30} \mathrm{~kg}}{1.675 \times 10^{-27} \mathrm{~kg}}=1.787 \times 10^{57}$ neutrons
b) $d N=2 \cdot\left(4 \pi p d p / h^{3}\right) V \quad v=g(p) d p$.
c) $N=\int_{0}^{\infty} g(p) d p \underset{\substack{\text { if } p<p_{F} \\ \text { oif } p p_{F}=}}{f(p)}=\int_{0}^{p_{F}} g(p) d p=\frac{8 \pi}{h^{3} V} \int_{0}^{P F} p^{2} d p=\frac{8 \pi p_{F}^{3} V}{3 h^{3}}$
d) $\langle\varepsilon\rangle=\frac{\int_{0}^{p_{F}} g(p) d p \varepsilon(p)}{\int_{0}^{P_{F}} g(p) d \rho}=\frac{\int_{0}^{p_{F}} p^{2} d p \cdot \frac{p^{2}}{2 M}}{\int_{0}^{R_{F}} p^{2} d p}=\frac{\frac{1}{2 M .5 p_{F}^{5}}}{\frac{1}{3} p_{F}^{3}}=\frac{3 p_{F}^{2}}{10 M_{n}}$

$$
\text { e) } \begin{array}{rlrl}
\left\langle\varepsilon_{k n}\right\rangle & =\frac{3 p_{F}^{2}}{10 m_{n}}=\frac{3}{10 m_{n}}\left(\frac{3 h^{3} \cdot N}{8 \pi V}\right)^{2 / 3}= & V=4 \\
3 & \pi R^{3} \\
& =\frac{3 \hbar^{2}}{10 M_{n} R^{2}}\left(\frac{9 \pi N}{4}\right)^{2 / 3} & h=\pi / 2 \pi
\end{array}
$$

$$
\text { f) } \begin{aligned}
& \frac{d}{d R}\left(\frac{3 \pi^{2}}{\left(10 M_{n} R^{2}\right.} \cdot\left(\frac{9 \pi N}{4}\right)^{2 / 3}\right.\left.-\frac{3 G N M_{n}^{2}}{R}\right)=\frac{-3 \hbar^{2}}{5 M_{n} R^{3}} \cdot\left(\frac{9 \pi N}{4}\right)^{2 / 3}+\frac{3}{5} \frac{G N M_{n}^{2}}{R^{2}}=0 \\
& R=\frac{\hbar^{2}(9 \pi / 4)^{2 / 3}}{G M_{n}^{3} N^{1 / 3}}=\frac{\left(1.05 \times 10^{-34} \mathrm{~J} \cdot 5\right)^{2} \cdot\left(\frac{9 \pi}{4}\right)^{2 / 3}}{6.67 \times 0^{-1 \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}} \cdot\left(1.67 \times 10^{-27} \mathrm{~kg}\right)^{3}\left(10^{57}\right)^{1 / 3}}=10.8 \mathrm{kw}
\end{aligned}
$$

出11:

$$
\begin{aligned}
& \frac{n_{2}}{n_{1}}=\frac{g_{2} e^{-E_{2} / k T}}{g_{1} e^{-E_{1} / k T}}=4 e^{-1 / k T}=4 e^{-10.2 \mathrm{eV} / \mathrm{kT}}=10^{-6} \\
& k T=0.671 \mathrm{eV} \quad T=7786 \mathrm{~K} \quad k=\frac{25 \mathrm{meV}}{300 \mathrm{~K}}
\end{aligned}
$$

ie: $k T=25 \mathrm{md}$ ex Nom tempiatore.
\#12: $\frac{n_{2}}{n_{1}}=\frac{g_{2} e^{-E_{2} / k T}}{g_{1} e^{-E_{1} / k T}}=\frac{3}{1} e^{-\frac{4 m c V}{25 m e V}}=2.56: 1$
-23: $\lambda \ll d \quad \lambda=\frac{h}{p}=\frac{h}{\sqrt{3} \text { unkT }} \quad$ where $\langle\varepsilon\rangle=\left\langle\frac{p^{2}}{2 m}\right\rangle=\frac{3}{2} k T$

$$
d=\left(\frac{V}{N}\right)^{1 / 3}
$$

$$
\begin{aligned}
& P_{0}=1 \mathrm{atan} \\
& T_{0}=300 \mathrm{~K} .
\end{aligned}
$$

it container is vucuum-tight so that V remains corstant:
then $N / V_{1}=N / N_{0}=\frac{k T_{0}}{P_{0}}$

$$
k T=\frac{h^{2}}{3 m}\left(\frac{P_{0}}{k T_{0}}\right)^{-2 / 3}=k\left[\frac{2.67}{0.53} \mathrm{k}\right]
$$

if the containes is collapsible so theit P remains constent:

$$
\text { then } \begin{aligned}
\left(\frac{h^{2}}{3 m}\right)^{3} & =\frac{(k T)^{5}}{p^{2}} \\
k T & =\left(\frac{h^{2}}{3 m}\right)^{3 / 5} \cdot P_{0}^{2 / 5}=k \cdot 4.4 k
\end{aligned}
$$

altinate: $N h^{3}=V \cdot \frac{4}{3} \pi p_{F}^{3} \quad\langle\varepsilon\rangle=\frac{3 p^{2}}{10 m}=\frac{3}{2} k T$

$$
\frac{P}{k T}=\frac{4}{3} \pi\left(\frac{h^{2}}{5 \sin k T}\right)^{3 / 2} \quad P_{F}^{2}=5 \mathrm{mkT}
$$

the sawe vithin a factor of Q.
426

$$
\begin{aligned}
& T_{c}=\frac{h^{2}}{2 m k}\left(\frac{\rho N_{A}}{2 \pi I_{0} A}\right)^{2 / 3}=0.868 \mathrm{~K} \\
& \text { it freezes first }
\end{aligned}
$$

$$
\begin{aligned}
& A=20.1797 \mathrm{~g} / \mathrm{mol}^{2} \\
& p=1.207 \mathrm{~g} / \mathrm{cm}^{3} \\
& m=A / N_{A}
\end{aligned}
$$

