Problem 9.5

The equilibrium separation of the Rb^{+}and Cl^{-}ions in RbCl is about 0.267 nm .

Part a

Calculate the potential energy of attraction of the ions, assuming them to be point charges.
Assuming that $-k e^{2} / r=0$ at infinite separation, the electrostatic potential energy at 0.267 nm for Rb^{+}and Cl^{-}is:

$$
\begin{aligned}
-\frac{k e^{2}}{r} & =-\frac{\left(8.98755179 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right)\left(1.60217646 \times 10^{-19} \mathrm{C}\right)^{2}}{2.67 \times 10^{-10} \mathrm{~m}} \\
& =-5.393 \mathrm{eV}
\end{aligned}
$$

Part b

The ionization energy of rubidium is 4.18 eV , and the electron affinity of Cl is 3.62 eV . Find the dissociation energy, neglecting the energy of repulsion.

The ionization energy to form Rb^{+}and Cl^{-}is, then, $4.18 \mathrm{eV}-3.62 \mathrm{eV}=0.56 \mathrm{eV}$, so the total energy required to dissociate RbCl (if we neglect the energy of repulsion) is $5.393 \mathrm{eV}-0.56 \mathrm{eV}=4.833 \mathrm{eV}$.

Part c

The measured dissociation energy is 4.37 eV . What is the energy due to repulsion of the ions?
If the measured dissociation energy at the equilibrium separation is 4.37 eV , the energy due to repulsion of the ions must be $4.833-4.37=0.463 \mathrm{eV}$.

Problem 9.6

Compute the Colomb energy of the KBr molecule at the equilibrium separation. Use that result to compute the exclusion-principle repulsion at r_{0}.

The equilibrium separation of KBr is $r_{0}=0.282 \mathrm{~nm}$, so the Colomb energy at equilibrium separation is $-k e^{2} / r=-5.393 \mathrm{eV}$. The ionization energy for K is 4.34 eV , and the electron affinity for Br is 3.36 eV . So, the ionization energy is $4.34 \mathrm{eV}-3.36 \mathrm{eV}=0.98 \mathrm{eV}$, giving us a total dissociation energy (neglecting the energy of repulsion) of $5.393 \mathrm{eV}-0.98 \mathrm{eV}=4.126 \mathrm{eV}$. The measured dissociation energy of KBr is 3.94 eV , so, the exclusion-principle repulsion at r_{0} is $4.126 \mathrm{eV}-3.94 \mathrm{eV}=0.186 \mathrm{eV}$.

Problem 9.7

If the exclusions-principle repulsion in Problem 9-6 is given by Equation 9-2, compute the coefficient A and the exponent n.

Equation 9-2 [Tipler \& Llewellyn, p. 365] is:

$$
E_{e x}=\frac{A}{r^{n}}
$$

At equilibrium separation, this gives us:

$$
0.186 \mathrm{eV}=\frac{A}{(0.282 \mathrm{~nm})^{n}}
$$

[Tipler \& Llewellyn, p. 367] At $r=r_{0}$, the net force on each ion must be zero because the potential energy has its minimum value at that point. This means that at $r=r_{0}$, the net Coloumb force F_{C} is equal in magnitude and opposite in sign to the exclusion-principle repulsive force, i.e.:

$$
F_{C}=-\left(\frac{d U_{c}}{d r}\right)_{r=r_{0}}=\left(\frac{n A}{r^{n+1}}\right)_{r=r_{0}}
$$

So, at $r=r_{0}$ we have that:

$$
F_{C}=\frac{U_{C}\left(r_{0}\right)}{r_{0}}=\frac{k e^{2}}{r_{0}^{2}}=18.107 \mathrm{eV} / \mathrm{nm}
$$

And:

$$
\frac{n A}{r_{0}^{n+1}}=\frac{n}{r_{0}} \frac{A}{r^{n}}=\frac{n}{0.282 \mathrm{~nm}}(0.186 \mathrm{eV})=18.107 \mathrm{eV} / \mathrm{nm}
$$

Or:

$$
\begin{aligned}
n & =18.107 \mathrm{eV} / \mathrm{nm}\left(\frac{0.282 \mathrm{~nm}}{0.186 \mathrm{eV}}\right) \\
& =27.453 \\
& \approx 27
\end{aligned}
$$

So, now we can calculate A :

$$
\begin{aligned}
0.186 \mathrm{eV} & =\frac{A}{(0.282 \mathrm{~nm})^{27}} \\
(0.186 \mathrm{eV})(0.282 \mathrm{~nm})^{27} & =A \\
2.668 \times 10^{-16} \mathrm{eV} \cdot \mathrm{~nm}^{27} & =A
\end{aligned}
$$

Problem 9.11

What kind of bonding mechanism would you expect for:

Part a

The KCl molecule?

Ionic

Part b

The O_{2} molecule?
Covalent

Part c

The CH_{4} molecule?
Covalent

Problem 9.37

A helium-neon laser emits light of wavelength 632.8 nm and has a power output of a 4 mW . How many photons are emitted per second by this laser?

We know that, for a photon, $E=h f$ and $\lambda f=c$, so $E=h c / \lambda$. Also, $P=\Delta W / \Delta t$. If $P=4 \mathrm{~mW}$, then we must have enough photons to equal $4 \mathrm{~mJ} / \mathrm{s}$. So, $E=h c / \lambda=1.959 \mathrm{eV}$, and

$$
\frac{4 \mathrm{~mJ} / \mathrm{s}}{1.959 \mathrm{eV} / \text { photon }}=1.274 \times 10^{16} \text { photons } / \text { second }
$$

Problem 10.10

Part a

Given a mean free path $\lambda=0.4 \mathrm{~nm}$ and a mean speed $\langle v\rangle=1.17 \times 10^{5} \mathrm{~m} / \mathrm{s}$ for the current flow in copper at a temperature of 300 K , calculate the classical value for the resistivity ρ of copper.

The restivity is given by $\rho=\frac{m_{e}\langle v\rangle}{n e^{2} \lambda}$. In this case, we know m_{e}, e, and, for copper, $n=8.47 \times 10^{22} \mathrm{atoms} / \mathrm{cm}^{3}$ [Tipler \& Llewellyn, p. 423]. So, we have that:

$$
\begin{aligned}
\rho & =\frac{m_{e}\langle v\rangle}{n e^{2} \lambda} \\
& =\frac{\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(1.17 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)}{\left(8.47 \times 10^{22} \text { atoms } / \mathrm{cm}^{3}\right)\left(1.602 \times 10^{-19} \mathrm{C}\right)^{2}(0.4 \mathrm{~nm})} \\
& =1.22549255 \times 10^{-7} \Omega \cdot \mathrm{~m}
\end{aligned}
$$

Part b

The classical model suggests that the mean free path is temperature independent and that $\langle v\rangle$ depends on temperature. From this model, what would ρ be at 100 K ?

We have that $\langle v\rangle=\sqrt{\frac{8 k T}{\pi m_{e}}}$. This depends only on known constants, except for T, the temperature. So, at 100 K we have:

$$
\begin{aligned}
\langle v\rangle & =\sqrt{\frac{8 k(100 \mathrm{~K})}{\pi m_{e}}} \\
& =6.213 \times 10^{4} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The resistivity at this temperature is, then:

$$
\begin{aligned}
\rho & =\frac{m_{e}\langle v\rangle}{n e^{2} \lambda} \\
& =\frac{\left(9.109 \times 10^{-31} \mathrm{~kg}\right)\left(6.213 \times 10^{4} \mathrm{~m} / \mathrm{s}\right)}{\left(8.47 \times 10^{22} \text { atoms } / \mathrm{cm}^{3}\right)\left(1.602 \times 10^{-19} \mathrm{C}\right)^{2}(0.4 \mathrm{~nm})} \\
& =6.50884052 \times 10^{-8} \Omega \cdot \mathrm{~m}
\end{aligned}
$$

Problem 10.16

Find the average energy of the electrons at $T=0 \mathrm{~K}$ in:

Part a

copper ($E_{F}=7.06 \mathrm{eV}$)
According to [Tipler \& Llewellyn, p. 429], the average energy at $T=0 \mathrm{~K}$ is given by $\langle E\rangle=\frac{3}{5} E_{F}$. So, for copper, the average energy of the electrons is $\langle E\rangle=\frac{3}{5} * 7.06 \mathrm{eV}=4.236 \mathrm{eV}$.

Part b

$$
\mathrm{Li}\left(E_{F}=4.77 \mathrm{eV}\right)
$$

Once again, the average energy at $T=0 \mathrm{~K}$ is given by $\langle E\rangle=\frac{3}{5} E_{F}$. So, for Li , the average energy of the electrons is $\langle E\rangle=$ $\frac{3}{5} * 4.77 \mathrm{eV}=2.862 \mathrm{eV}$.

Problem 10.27

Part a

The energy gap between the valence band and the conduction band in silicon is 1.14 eV at room temperature. What is the wavelength of a photon that will excite an electron from the top of the valence band to the bottom of the conduction band?

For light, $E=h f=h c / \lambda$, so $\lambda=h c / E$. In this case, then, $\lambda=h c / 1.14 \mathrm{eV}=1088 \mathrm{~nm}$.

Part b

Repeat the calculation in part (a) for germanium, for which the energy gap is 0.72 eV .

In this case, $\lambda=h c / 0.72 \mathrm{eV}=1722 \mathrm{~nm}$.

Part c

Repeat the calculation in part (a) for diamond, for which the energy gap is 7.0 eV .
In this case, $\lambda=h c / 7.0 \mathrm{eV}=177.1 \mathrm{~nm}$.

Problem 11.27

Show that the α particle emitted in the decay of the ${ }^{232} \mathrm{Th}$ carries away 4.01 MeV , or 98 percent, of the total decay energy.

The α decay of the ${ }^{232} \mathrm{Th}$ atom is ${ }^{232} \mathrm{Th} \rightarrow{ }^{228} \mathrm{Ra}+\alpha$. We know the total decay energy is $Q=4.08 \mathrm{MeV}$ [Tipler \& LLewellyn web site] and that, if the particle is at rest during the decay, that both the α and the ${ }^{228}$ Ra have the same momenta. The sum of the kinetic energy of these two particles is

$$
Q=\frac{p^{2}}{2 M_{D}}+\frac{p^{2}}{2 M_{\mathrm{He}}}=\frac{p^{2}}{2 M_{\mathrm{He}}}\left(1+\frac{M_{\mathrm{He}}}{M_{D}}\right)
$$

Where M_{D} is the mass of the daughter atom, ${ }^{228} \mathrm{Rb}, M_{\mathrm{He}}$ is the mass of the α particle, and p is the common momenta of the two particles. Since $M_{\mathrm{He}}=4$ and $M_{D}=A-4$, where A is mass number of the parent nucleus, ${ }^{232} \mathrm{Th}$, and in this case $A=232$. So, substituting E for $\frac{p^{2}}{2 M} \mathrm{He}$, the kinetic energy of the α particle, we get:

$$
\begin{aligned}
Q & =E\left(1+\frac{M_{\mathrm{He}}}{M_{D}}\right) \\
\frac{4.08 \mathrm{MeV}}{\left(1+\frac{4}{232-4}\right)} & =E \\
4.0097 \mathrm{MeV} & =E
\end{aligned}
$$

Problem 11.34

${ }^{80} \mathrm{Br}$ can undergo all three types of β decay.

Part a

Write down the decay equation in each case.
For β decay, we have:

$$
\begin{aligned}
& \beta^{-} \text {decay: }{ }_{35}^{80} \mathrm{Br} \rightarrow{ }_{36}^{80} \mathrm{Kr}+\beta^{-}+\bar{\nu}_{e} \\
& \beta^{+} \text {decay: }{ }_{30}^{80} \mathrm{Br} \rightarrow{ }_{34}^{80} \mathrm{Se}+\beta^{+}+\nu_{e} \\
& \text { electron capture: }{ }_{35}^{80} \mathrm{Br} \rightarrow{ }_{34}^{80} \mathrm{Se}+\nu_{e}
\end{aligned}
$$

Part b

Compute the decay energy for each case.
For β^{-}decay, the decay energy is given by $\frac{Q}{c^{2}}=M_{P}-M_{D}$, where M_{P} is the mass of the parent particle and M_{D} is the mass of the daughter particle. So, in this case we have $Q / c^{2}=79.918528 \mathbf{u}-79.916377 \mathbf{u}=0.002151 \mathbf{u}=2.004 \mathrm{MeV} / c^{2}$.
For β^{+}decay, the decay energy is given by $\frac{Q}{c^{2}}=M_{P}-\left(M_{D}+2 m_{e}\right)$. So, we have $Q / c^{2}=79.918528 \mathbf{u}-\left(79.916519 \mathbf{u}-2 m_{e}\right)=$ $0.003106 \mathrm{u}=2.893 \mathrm{MeV} / c^{2}$
Finally, for electron capture, the decay energy is calculated in the same way as for β^{-}, which gives $Q / c^{2}=79.918528 \mathbf{u}-$ $79.916519 u=0.002009 u=1.871 \mathrm{MeV} / c^{2}$.

Problem 11.51

Write three different reactions that could produce the products:

Part a

$$
n+{ }^{23} \mathrm{Na}
$$

$$
\begin{aligned}
\alpha+{ }^{20} \mathrm{~F} & \rightarrow{ }^{23} \mathrm{Na}+n+Q \\
d+{ }^{22} \mathrm{Ne} & \rightarrow{ }^{23} \mathrm{Na}+n+Q \\
{ }^{11} \mathrm{~B}+{ }^{13} \mathrm{C} & \rightarrow{ }^{23} \mathrm{Na}+n+Q
\end{aligned}
$$

In each case, $Q=\left(m_{x}+m_{X}-m_{y}-m_{Y}\right) c^{2}$, so we get for the first reaction:

$$
\begin{aligned}
Q & =\left(m_{\alpha}+m_{\mathrm{FI}}-m_{n}-m_{\mathrm{Na}}\right) c^{2} \\
& =(4.00150617 \mathbf{u}+19.999982 \mathbf{u}-1.008665 \mathbf{u}-22.989767 \mathbf{u}) c^{2} \\
& =2.847 \mathrm{MeV}
\end{aligned}
$$

For the second reaction:

$$
\begin{aligned}
Q & =\left(m_{d}+m_{\mathrm{Ne}}-m_{n}-m_{\mathrm{Na}}\right) c^{2} \\
& =(2.01355321270 \mathbf{u}+21.991383 \mathbf{u}-1.008665 \mathbf{u}-22.989767 \mathbf{u}) c^{2} \\
& =6.059 \mathrm{MeV}
\end{aligned}
$$

For the third reaction, we get:

$$
\begin{aligned}
Q & =\left(m_{\mathrm{B}}+m_{\mathrm{C}}-m_{n}-m_{\mathrm{Na}}\right) c^{2} \\
& =(11.009305 \mathrm{u}+13.003355 \mathrm{u}-1.008665 \mathrm{u}-22.989767 \mathrm{u}) c^{2} \\
& =13.25 \mathrm{MeV}
\end{aligned}
$$

So, the final reactions are:

$$
\begin{aligned}
\alpha+{ }^{20} \mathrm{FI} & \rightarrow{ }^{23} \mathrm{Na}+n+2.847 \mathrm{MeV} \\
d+{ }^{22} \mathrm{Ne} & \rightarrow{ }^{23} \mathrm{Na}+n+6.059 \mathrm{MeV} \\
{ }^{11} \mathrm{~B}+{ }^{13} \mathrm{C} & \rightarrow{ }^{23} \mathrm{Na}+n+13.25 \mathrm{MeV}
\end{aligned}
$$

Part b

$$
p+{ }^{14} \mathrm{C}
$$

$$
\begin{array}{r}
\alpha+{ }^{11} \mathrm{~B} \rightarrow{ }^{14} \mathrm{C}+p+Q \\
d+{ }^{13} \mathrm{C} \rightarrow{ }^{14} \mathrm{C}+p+Q \\
{ }^{6} \mathrm{Li}+{ }^{9} \mathrm{Be} \rightarrow{ }^{14} \mathrm{C}+p+Q
\end{array}
$$

In each case, $Q=\left(m_{x}+m_{X}-m_{y}-m_{Y}\right) c^{2}$, so we get for the first reaction:

$$
\begin{aligned}
Q & =\left(m_{\alpha}+m_{\mathrm{B}}-m_{p}-m_{\mathrm{C}}\right) c^{2} \\
& =(4.00150617 \mathrm{u}+11.009305 \mathbf{u}-1.00727646688 \mathbf{u}-14.003242 \mathbf{u}) c^{2} \\
& =0.2727 \mathrm{MeV}
\end{aligned}
$$

For the second reaction:

$$
\begin{aligned}
Q & =\left(m_{d}+m_{\mathrm{C}}-m_{p}-m_{\mathrm{C}}\right) c^{2} \\
& =(2.01355321270 \mathbf{u}+13.003355 \mathbf{u}-1.00727646688 \mathbf{u}-14.003242 \mathbf{u}) c^{2} \\
& =5.952 \mathrm{MeV}
\end{aligned}
$$

For the third reaction, we get:

$$
\begin{aligned}
Q & =\left(m_{\mathrm{Li}}+m_{\mathrm{Be}}-m_{n}-m_{\mathrm{Na}}\right) c^{2} \\
& =(6.015121 \mathbf{u}+9.012174 \mathbf{u}-1.00727646688 \mathbf{u}-14.003242 \mathbf{u}) c^{2} \\
& =15.63 \mathrm{MeV}
\end{aligned}
$$

So, the final reactions are:

$$
\begin{aligned}
\alpha+{ }^{11} \mathrm{~B} & \rightarrow{ }^{14} \mathrm{C}+p+0.2727 \mathrm{MeV} \\
d+{ }^{13} \mathrm{C} & \rightarrow{ }^{14} \mathrm{C}+p+5.952 \mathrm{MeV} \\
{ }^{6} \mathrm{Li}+{ }^{9} \mathrm{Be} & \rightarrow{ }^{14} \mathrm{C}+p+15.63 \mathrm{MeV}
\end{aligned}
$$

Part c

$$
d+{ }^{31} \mathrm{P}
$$

$$
\begin{array}{r}
\alpha+{ }^{29} \mathrm{Si} \rightarrow{ }^{31} \mathrm{P}+d+Q \\
{ }^{21} \mathrm{Ne}+{ }^{12} \mathrm{C} \rightarrow{ }^{31} \mathrm{P}+d+Q \\
{ }^{17} \mathrm{O}+{ }^{16} \mathrm{O} \rightarrow{ }^{31} \mathrm{P}+d+Q
\end{array}
$$

In each case, $Q=\left(m_{x}+m_{X}-m_{y}-m_{Y}\right) c^{2}$, so we get for the first reaction:

$$
\begin{aligned}
Q & =\left(m_{\alpha}+m_{\mathrm{Si}}-m_{d}-m_{\mathrm{P}}\right) c^{2} \\
& =(4.00150617 \mathbf{u}+28.976495 \mathbf{u}-2.01355321270 \mathbf{u}-30.973762 \mathbf{u}) c^{2} \\
& =-8.676 \mathrm{MeV}
\end{aligned}
$$

For the second reaction:

$$
\begin{aligned}
Q & =\left(m_{\mathrm{Ne}}+m_{\mathrm{C}}-m_{d}-m_{\mathrm{P}}\right) c^{2} \\
& =(20.993841 \mathbf{u}+12 \mathbf{u}-2.01355321270 \mathbf{u}-30.973762 \mathbf{u}) c^{2} \\
& =6.079 \mathrm{MeV}
\end{aligned}
$$

For the third reaction, we get:

$$
\begin{aligned}
Q & =\left(m_{17} \mathrm{O}+m_{15} \mathrm{O}-m_{d}-m_{\mathrm{P}}\right) c^{2} \\
& =(16.999132 \mathrm{u}+15.994915 \mathrm{u}-2.01355321270 \mathbf{u}-30.973762 \mathbf{u}) c^{2} \\
& =6.271 \mathrm{MeV}
\end{aligned}
$$

So, the final reactions are:

$$
\begin{array}{r}
\alpha+{ }^{29} \mathrm{Si} \rightarrow{ }^{31} \mathrm{P}+d-8.676 \mathrm{MeV} \\
{ }^{21} \mathrm{Ne}+{ }^{12} \mathrm{C} \rightarrow{ }^{31} \mathrm{P}+d+6.079 \mathrm{MeV} \\
{ }^{17} \mathrm{O}+{ }^{16} \mathrm{O}
\end{array} \rightarrow^{31} \mathrm{P}+d+6.271 \mathrm{MeV} ~ \$
$$

