
Wayne Witzke ProblemSet #9 PHY 361

Problem 9.5

The equilibrium separation of the Rb+ and Cl− ions in RbCl is about 0.267 nm.

Part a

Calculate the potential energy of attraction of the ions, assuming them to be point charges.

Assuming that −ke2/r = 0 at infinite separation, the electrostatic potential energy at 0.267 nm for Rb+ and Cl− is:

−ke
2

r
= −

(
8.98755179× 109N ·m2/C2

) (
1.60217646× 10−19C

)2
2.67× 10−10m

= −5.393 eV

Part b

The ionization energy of rubidium is 4.18 eV, and the electron affinity of Cl is 3.62 eV. Find the dissociation energy,
neglecting the energy of repulsion.

The ionization energy to form Rb+ and Cl− is, then, 4.18 eV− 3.62 eV = 0.56 eV, so the total energy required to dissociate RbCl
(if we neglect the energy of repulsion) is 5.393 eV− 0.56 eV = 4.833 eV.

Part c

The measured dissociation energy is 4.37 eV. What is the energy due to repulsion of the ions?

If the measured dissociation energy at the equilibrium separation is 4.37 eV, the energy due to repulsion of the ions must be
4.833− 4.37 = 0.463 eV.

Problem 9.6

Compute the Colomb energy of the KBr molecule at the equilibrium separation. Use that result to compute the
exclusion-principle repulsion at r0.

The equilibrium separation of KBr is r0 = 0.282 nm, so the Colomb energy at equilibrium separation is −ke2/r = −5.393 eV. The
ionization energy for K is 4.34 eV, and the electron affinity for Br is 3.36 eV. So, the ionization energy is 4.34 eV−3.36 eV = 0.98 eV,
giving us a total dissociation energy (neglecting the energy of repulsion) of 5.393 eV−0.98 eV = 4.126 eV. The measured dissociation
energy of KBr is 3.94 eV, so, the exclusion-principle repulsion at r0 is 4.126 eV− 3.94 eV = 0.186 eV.

Problem 9.7

If the exclusions-principle repulsion in Problem 9-6 is given by Equation 9-2, compute the coefficient A and the exponent
n.

Equation 9-2 [Tipler & Llewellyn, p. 365] is:

Eex =
A

rn

At equilibrium separation, this gives us:

0.186 eV =
A

(0.282 nm)n
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[Tipler & Llewellyn, p. 367] At r = r0, the net force on each ion must be zero because the potential energy has its
minimum value at that point. This means that at r = r0, the net Coloumb force FC is equal in magnitude and opposite
in sign to the exclusion-principle repulsive force, i.e.:

FC = −
(
dUc
dr

)
r=r0

=
(
nA

rn+1

)
r=r0

So, at r = r0 we have that:

FC =
UC (r0)
r0

=
ke2

r20
= 18.107 eV/nm

And:
nA

rn+1
0

=
n

r0

A

rn
=

n

0.282 nm
(0.186 eV) = 18.107 eV/nm

Or:

n = 18.107 eV/nm
(

0.282 nm
0.186 eV

)
= 27.453
≈ 27

So, now we can calculate A:

0.186 eV =
A

(0.282 nm)27

(0.186 eV) (0.282 nm)27 = A

2.668× 10−16eV · nm27 = A

Problem 9.11

What kind of bonding mechanism would you expect for:

Part a

The KCl molecule?

Ionic

Part b

The O2 molecule?

Covalent

Part c

The CH4 molecule?

Covalent
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Problem 9.37

A helium-neon laser emits light of wavelength 632.8 nm and has a power output of a 4 mW. How many photons are
emitted per second by this laser?

We know that, for a photon, E = hf and λf = c, so E = hc/λ. Also, P = ∆W/∆t. If P = 4mW, then we must have enough
photons to equal 4mJ/s. So, E = hc/λ = 1.959 eV, and

4mJ/s
1.959 eV/photon

= 1.274× 1016photons/second

Problem 10.10

Part a

Given a mean free path λ = 0.4 nm and a mean speed 〈v〉 = 1.17 × 105m/s for the current flow in copper at a
temperature of 300 K, calculate the classical value for the resistivity ρ of copper.

The restivity is given by ρ = me〈v〉
ne2λ . In this case, we know me, e, and, for copper, n = 8.47× 1022 atoms/cm3 [Tipler & Llewellyn,

p. 423]. So, we have that:

ρ =
me 〈v〉
ne2λ

=

(
9.109× 10−31kg

) (
1.17× 105m/s

)
(8.47× 1022 atoms/cm3) (1.602× 10−19C)2 (0.4 nm)

= 1.22549255× 10−7Ω ·m

Part b

The classical model suggests that the mean free path is temperature independent and that 〈v〉 depends on temperature.
From this model, what would ρ be at 100 K?

We have that 〈v〉 =
√

8kT
πme

. This depends only on known constants, except for T , the temperature. So, at 100 K we have:

〈v〉 =

√
8k (100K)
πme

= 6.213× 104m/s

The resistivity at this temperature is, then:

ρ =
me 〈v〉
ne2λ

=

(
9.109× 10−31kg

) (
6.213× 104m/s

)
(8.47× 1022 atoms/cm3) (1.602× 10−19C)2 (0.4 nm)

= 6.50884052× 10−8Ω ·m

Problem 10.16

Find the average energy of the electrons at T = 0K in:
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Part a

copper (EF = 7.06 eV)

According to [Tipler & Llewellyn, p. 429], the average energy at T = 0K is given by 〈E〉 = 3
5EF . So, for copper, the average

energy of the electrons is 〈E〉 = 3
5 ∗ 7.06 eV = 4.236 eV.

Part b

Li (EF = 4.77 eV)

Once again, the average energy at T = 0K is given by 〈E〉 = 3
5EF . So, for Li, the average energy of the electrons is 〈E〉 =

3
5 ∗ 4.77 eV = 2.862 eV.

Problem 10.27

Part a

The energy gap between the valence band and the conduction band in silicon is 1.14 eV at room temperature. What
is the wavelength of a photon that will excite an electron from the top of the valence band to the bottom of the
conduction band?

For light, E = hf = hc/λ, so λ = hc/E. In this case, then, λ = hc/1.14 eV = 1088 nm.

Part b

Repeat the calculation in part (a) for germanium, for which the energy gap is 0.72 eV.

In this case, λ = hc/0.72 eV = 1722 nm.

Part c

Repeat the calculation in part (a) for diamond, for which the energy gap is 7.0 eV.

In this case, λ = hc/7.0 eV = 177.1 nm.

Problem 11.27

Show that the α particle emitted in the decay of the 232Th carries away 4.01 MeV, or 98 percent, of the total decay
energy.

The α decay of the 232Th atom is 232Th→228 Ra+α. We know the total decay energy is Q = 4.08MeV [Tipler & LLewellyn web
site] and that, if the particle is at rest during the decay, that both the α and the 228Ra have the same momenta. The sum of the
kinetic energy of these two particles is

Q =
p2

2MD
+

p2

2MHe
=

p2

2MHe

(
1 +

MHe
MD

)
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Where MD is the mass of the daughter atom, 228Rb, MHe is the mass of the α particle, and p is the common momenta of the
two particles. Since MHe = 4 and MD = A− 4, where A is mass number of the parent nucleus, 232Th, and in this case A = 232.
So, substituting E for p2

2MHe
, the kinetic energy of the α particle, we get:

Q = E

(
1 +

MHe
MD

)
4.08MeV(
1 + 4

232−4

) = E

4.0097MeV = E

Problem 11.34

80Br can undergo all three types of β decay.

Part a

Write down the decay equation in each case.

For β decay, we have:

β−decay:8035Br→80
36Kr + β− + ν̄e

β+decay:8035Br→80
34Se + β+ + νe

electron capture:8035Br→80
34Se + νe

Part b

Compute the decay energy for each case.

For β−decay, the decay energy is given by Q
c2 = MP −MD, where MP is the mass of the parent particle and MD is the mass of

the daughter particle. So, in this case we have Q/c2 = 79.918528 u− 79.916377 u = 0.002151 u = 2.004MeV/c2.

For β+ decay, the decay energy is given by Q
c2 = MP − (MD + 2me). So, we have Q/c2 = 79.918528 u− (79.916519 u− 2me) =

0.003106 u = 2.893MeV/c2

Finally, for electron capture, the decay energy is calculated in the same way as for β−, which gives Q/c2 = 79.918528 u −
79.916519 u = 0.002009 u = 1.871MeV/c2.

Problem 11.51

Write three different reactions that could produce the products:

Part a

n+23 Na
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α+ 20F→23Na+n+Q

d+22Ne→23Na+n+Q
11B+ 13C→23Na+n+Q

In each case, Q = (mx +mX −my −mY ) c2, so we get for the first reaction:

Q =
(
mα +mFl −mn −mNa

)
c2

= (4.00150617 u + 19.999982 u− 1.008665 u− 22.989767 u) c2

= 2.847MeV

For the second reaction:

Q =
(
md +mNe −mn −mNa

)
c2

= (2.01355321270 u + 21.991383 u− 1.008665 u− 22.989767 u) c2

= 6.059MeV

For the third reaction, we get:

Q =
(
mB +mC −mn −mNa

)
c2

= (11.009305 u + 13.003355 u− 1.008665 u− 22.989767 u) c2

= 13.25MeV

So, the final reactions are:

α+ 20Fl→23Na+n+2.847MeV

d+22Ne→23Na+n+6.059MeV
11B+ 13C→23Na+n+13.25MeV

Part b

p+14 C

α+11B→14C+p+Q

d+13C→14C+p+Q
6Li+9Be→14C+p+Q

In each case, Q = (mx +mX −my −mY ) c2, so we get for the first reaction:

Q =
(
mα +mB −mp −mC

)
c2

= (4.00150617 u + 11.009305 u− 1.00727646688 u− 14.003242 u) c2

= 0.2727MeV

For the second reaction:

Q =
(
md +mC −mp −mC

)
c2

= (2.01355321270 u + 13.003355 u− 1.00727646688 u− 14.003242 u) c2

= 5.952MeV
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For the third reaction, we get:

Q =
(
mLi +mBe −mn −mNa

)
c2

= (6.015121 u + 9.012174 u− 1.00727646688 u− 14.003242 u) c2

= 15.63MeV

So, the final reactions are:

α+11B→14C+p+0.2727MeV

d+13C→14C+p+ 5.952MeV
6Li+9Be→14C+p+ 15.63MeV

Part c

d+31 P

α+29Si→31P+d+Q
21Ne+ 12C→31P+d+Q
17O+16O→31P+d+Q

In each case, Q = (mx +mX −my −mY ) c2, so we get for the first reaction:

Q =
(
mα +mSi −md −mP

)
c2

= (4.00150617 u + 28.976495 u− 2.01355321270 u− 30.973762 u) c2

= −8.676MeV

For the second reaction:

Q =
(
mNe +mC −md −mP

)
c2

= (20.993841 u + 12 u− 2.01355321270 u− 30.973762 u) c2

= 6.079MeV

For the third reaction, we get:

Q =
(
m17O +m15O −md −mP

)
c2

= (16.999132 u + 15.994915 u− 2.01355321270 u− 30.973762 u) c2

= 6.271MeV

So, the final reactions are:

α+29Si→31P+d−8.676MeV
21Ne+ 12C→31P+d+6.079MeV
17O+16O→31P+d+6.271MeV
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