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A ballistic neutron transport simulation is being performed to optimize the
measurement of hadronic parity violation in the reaction n + 3He → p + t. The
simulation will be used for the design of a combined 3He scattering target and
drift chamber to detect the recoil proton and triton.

1 Design Considerations

The goals of this simulation are to determine:

• the ionization response in each wire plane

• the sensitivity to the asymmetry in each wire plane

• the statistical error and correlations of the signals in each wire plane

• the requirements in digitizing the output signal

• the effective statistics δ-2A = βN of the helicity asymmetry

• the feasibility of measuring a detector asymmetry to cancel beam fluctu-
ations

The simulation has two main parts: simulating the neutron intensity and phase
space at the end of the guide, and simulation the reaction and detection of ions
in the 3He chamber.

2 McStas Simulation

The present simulation is based on the output ntuple of the simulation reported
in [1]. This ntuple was used as the event generator. The ntuple is normalized
so that integral of the variable p6 over the entire ntuple represents the number
of neutrons exiting the supermirror bender polarizer during one pulse of the
proton beam of power 2 MW. The neutron phase space at this point is specified
by the variables (x,v) = (x6, y6, vx6, vy6, vz6), with the weight p6. Cuts are
placed on the events to simulate the choppers (C1,2) and collimator (Ccol) in
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the guide, as described in [2], to generate the number N of neutrons out the
end of the guide per 1.4 MW pulse:

N =
∑
x,v

n, where n = p6C1C2Ccol(1.4/2.0) (1)

is the weighted number from each event in the ntuple, and
∑

x,v is summed
over events in the ntuple (Monte Carlo integral over neutron phase space).

For each ntuple event with phase (x,v), the detector response is integrated
over the position z of the interaction vertex and the angle α = cos(θ) of the
recoil proton. This introduces an additional weight factor

wzα = e−ρσzρσdz · 1
2dα, (2)

where ρ is the 3He density, σ is the n + 3He → t + p total cross section, and z
is the distance from the entrance to the ion chamber.

For each vertex (z, α), we calculate the ionization distribution due to the
proton and triton recoil energy using βp,t(x) = dnion/dx, the ion density as a
function of the distance the proton or triton has traveled. Since proton and
triton ion tracks are indistinguishable except for their range, we add the two
functions. The triton recoils opposite to the proton since the neutron has negli-
bible energy. Changing coordinates and integrating over each ion chamber wire
plane (detector) i bounded by zi < z′ < zi+1, the ionization response for a
single event is

βi(z, α) =
∫ zi+1

zi

dz′
(

βp

(
z′ − z

α

)
+ βt

(
z′ − z

−α

))
, (3)

corresponding to
ni = βi(z, α) wzα n (4)

ions detected in the wire plane i for that event. In the code, the integration
is sampled over the entire range of βt,p, adding ions to the corresponding wire
plane i at each step along the track.

To extract the information described in the introduction, we need to tabulate
the following variables over the ntuple (and vertex):

N ≡
∑
x,v

n, (5)

P 2N ≡ F ≡
∑
x,v

p2n = 〈p2〉 N, (6)

βiN ≡ Ni ≡
∑

x,v,z,α

ni = 〈βi(z, α)〉 N, (7)

αiβiN ≡ Mi ≡
∑

x,v,z,α

α ni = 〈αβi(z, α)〉 N, (8)

where P is the neutron polarization, βi and αi are the ion yield normalized to the
neutron flux and sensitivity to the physics asymmetry, respectively, in the wire
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plane i of the ion chamber. 〈x〉 is the weighted average of x over
∑

x,v,z,α wzαn.
We also tabulate the statistical uncertainty which requires a full covariance
matrix, since each neutron reaction leaves an ion track spanning multiple wire
planes. We assume that the most significant statistical error comes from the
event shot noise, not ionization fluctuations. In this case the covariance matrix
is

δ2Nij =
∑

x,v,z,α

δ2nij =
∑

x,v,z,α

ninj

wzαn
= 〈βiβj〉N. (9)

3 Helicity Asymmetry

For a single event (x,v, z, α), the helicity-dependent probability of scattering a
proton into the angle α = cos θ is

n± = n(1± PAα), (10)

where ±P labels the spin polarization of the neutron and A is the physics asym-
metry to be measured. Integrated over a neutron pulse, the helicity-dependent
detector response is then

N±
i = Ni(1± PAαi), (11)

with the covariance matrix δ2Nij after summing over both helicity states. From
this we extract individual detector helicity asymmetries,

Ai =
N+

i −N−
i

N+
i + N−

i

= PAαi. (12)

The covariance matrix of detector asymmetries Ai is

δ2Aij =
δ2Nij

NiNj
=

〈βiβj〉
βiβj N

. (13)

Let the extracted physics asymmetry be A′
i = Ai/Pαi. The average extracted

asymmetry over all detectors must be covariantly weighted by the matrix w:

wij = δ-2A′
ij = P 2αiαjδ

-2Aij , (14)

A′ ≡ 〈A′
i〉w ≡

∑
ij wijA

′
i∑

ij wij
=

∑
ij P αiAjδ

-2Aij∑
ij P 2αiαjδ-2Aij

. (15)

The figure of merit equals the denominator, a measure of the effective statistics:

δ-2A′ ≡
∑
ij

δ-2A′
ij =

∑
ij

wij =
∑
ij

P 2MiMjδ
-2Nij ≡ αP 2N, (16)

and α is an ‘efficiency of statistics’. Note that α ≤ 〈α2〉 = 1
3 , because reac-

tions with the proton emitted at 90◦ do not contribute to a measurement of
the asymmetry. For complete correlation it degenerates into an overdetermined
linear system, because each detector carries the same information. This corre-
sponds to null eigenvalues in the matrix δ2Nij .
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4 Detector Asymmetry

The last question we consider is whether it is feasible to measure a detector
asymmetry separately for each neutron spin state, so that we do not need to
normalize by the beam flux while making the asymmetry measurement. This
is a question of how much of the backward scattering we are able to detect, or
the leverage between detector sensitivities αi. The perfect experiment would
have α1 = 1, α2 = −1. For a given helicity, we wish to extract both N and
∆ ≡ NA from the individual rates N±

i , where the sign is fixed for each pulse.
Given the response βi and sensitivity αi coefficients simulated above, we extract
these from a covariant least squares fit to the form

N±
i ≈ βiN ± Pαiβi∆ or N ≈ Ba, (17)

where

N =

 N±
0

N±
1
...

 , B =

 β0 ±Pα0β0

β1 ±Pα1β1
...

...

 , a =
(

N
∆

)
, (18)

using the formula

χ2 = 1
2 (N −Ba)T δ-2N (N −Ba), (19)

∇aχ2 = BT δ-2N (Ba−N) = 0, (20)

where δ-2N acts as a least squares metric. The solution is

a = BaN ≡ (δ2aBT δ-2N) N, where δ2a = (BT δ-2N B)−1 (21)

is the covariance matrix. This is used to calculate the error in A′ = ∆/N
and thus the effective statistics δ-2A′ = βP 2N . A comparison of β from spin-
asymmetries and detector-asymmetries will follow from the finished MC simu-
lation.
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