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The neutron has zero net charge, eluding common nuclear physics techniques
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both the strong and weak interactions, and can be interpreted structure of nuclear matter remains elusive due to the difficulty of QCD calculations in the low energy frontier.
as the exchange of quark-antiquark pairs (, p, w-mesons). Hadronic Interaction Thus nuclear structure has typically been explored through electromagnetic interactions, like electron scattering.

(residual nuclear force) The hadronic weak interaction (HWI) is an attractive alternative because it involves only nucleons, but the weak
component is short-range and precisely calculable at low energies. While the HWI is dominated by the strong
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The weak interaction is 107 times smaller than its strong counterpart. light is collected i vacUUmEPhOlEdEEES, which
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The goal of the NPDGamma experiment is to isolate the hadronic weak mrumenssysems 7 A &
interaction (HWI) in neutron-proton capture, by observing a PV asymmetry
in the emission of gamma rays. The gamma momentum is a vector, which \ § ) s
changes direction under parity inversion. But spin is a pseudo-vector, and 3 N N il -
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repulsive nuclear potential. Neutrons
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W SyStemat|C U nce rta|nt|es The NPDGamma apparatus was commissioned during 2004-2005 at LANSCE (Los Alamos National Lab).
A series of engineering runs tested PV backgrounds from beamline materials and in other physically
Different hadronic nuclear reactions have varying sensitivity to each interesting nuclei. In 2006, the n + p — d +y asymmetry A, was measured at a level comparable with
coupling. The goal of the HWI program is to measure enough different 107 3 Ay = Although the weak interaction is the only physical o e previous world limit. Data analysis is in progress. The experiment is currently being installed at a ten
reactions to solve for each of the coupling constants. ] Stat. efr. m - process which violates parity, there are other ‘ e times more intense beamline at the SNS, (Oak Ridge National Lab), where we project to measure A, with
s (proposal) physically allowed processes which may mimic PV an uncertainty of dA,=10%. At this level we expect to observe a statistically significant nonzero result.
effects in the detector, for example:
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