RESONANT FREQUENCY NEUTRON SPIN FLIPPER 5/10/11
DOUBLE COS-THETA COIL WINDING

INTRO

The purpose of this experiment is to accurately measure parity violation of protons. We will study the
asymmetry associated with parity violation via a reaction of a neutron beam with a Helium-3 source,

n+ 3He = 3H + *H + 765 keV. In this reaction, a polarized, cold neutron beam is guided towards a Helium-
3 target resulting in tritium, protium, and energy. The results of the reaction vary depending on the spin of
the neutrons involved. We will collide beam after beam of either ‘transverse up’ or ‘transverse down’
neutrons with the Helium-3 target and compare the results, allowing the P.V. asymmetry to be precisely
measured.

BASIC EXPERIMENTAL SETUP

The experiment starts with a highly accelerated proton beam colliding with a neutron spallation source. The
resulting neutrons are then moderated in a liquid parahydrogen target so that they can be manipulated in the
lab. At this point, we introduce a static, unidirectional magnetic field to experiment, which will polarize the
neutrons either ‘transverse up’ or ‘transverse down’. We will then guide the beam through a neutron
supermirror which will absorb neutrons of ‘down’ spin, while allowing the passage of neutrons of ‘up’ spin.
This ensures that we have a neutron beam which precesses in only one direction. The resultant beam passes
through a chopper to reduce the range of velocities of the neutrons to be studied. The neutrons now pass
through a resonant frequency spin flipper (RFSF). A power source will be connected to the apparatus in
series along with a switchbox which will cycle between the RFSF and a resistive dummy load. This causes
every other neutron beam to be flipped, allowing for a reaction of ‘up’ neutrons with the He-3 target to be
closely compared with a reaction of ‘down’ neutrons with the He-3 target. The He-3 chamber contains
several wires in a grid. We induce a large voltage drop across each wire with no current running through
them. The walls of the chamber serve as a cathode, and the wires as anodes. The reaction of the neutrons
with the He-3 target produces protons which, in turn, ionize the surrounding gas. lons are attracted to the
wire grid produces measurable current in the wires. This allows us to calculate momentum of the protons
and measure the parity violation associated with the reaction.




POTENTIAL

First, we will solve for the two potentials for of our design. The first, inner potential will lie in the region

s = 0tos = a. The second potential will lie in the region s = a to s = A. Additionally, we will require that
the potential outside the two cylindrical shells is zero in all directions.

Calculating the potential inside the inner cylinder:
ﬁ=—VU=—%UD=H£

Integrating: —U =H,x
U=-H,x
U= —-H,scos¢

Calculating the potential between the inner and outer cylinder (solving Laplace’s Eq.): V2U = 0

Note that the solution for potential does not depend on z.

General Solution: U =a, + byn(s) + Y=y (ars® + brs™)(cxcos (k) + dysin(kep))
Boundaries: @s=a: U= —H,scos¢ (D)
@s = A U=0 (ii)

Due to boundary conditions, a, = d; = 0.
Also due to boundary conditions, we are only concerned with solutions in which k = 1.

Remaining Solution: U = b,In(s) + c;cosp(ass + bys™1)
Let ¢, be absorbed by a; and b;.
Remaining Solution: U = b,In(s) + cos¢p(a;s + bys™1)

Differentiate each side with respect to s and evaluate at each boundary.
) = (—Hyscosh)|yeq = = [boIn(s) + cos(ars + bys™)]ls=q
—H,cos¢p = [b?" + cos¢ (a1 - :—;)] ls=a
—H,cos¢p = [%" + cos¢ (a1 - ﬂ)]

a?

Obviously, b, = 0 and —H, = (‘11 _ ”_1)

aZ
.. a a _
i) P (0)[5=4 = P [boIn(s) + cosp(ass + bys™)]|s=a
b
0= [O + cos¢ (a1 - S—;)] ls=a
b
0=a, — A—;
b
a, = A—;
. . . . by by

Plugging this back into i): -H, = (E — ;)

~Ho = by (=~ )
by == () Ho = () Ho
Going back to our original equation for potential (k=1 solution):
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U=a,+b,In(s) + (a;s + bys 1) (c;cosp + d;sing)

With variables:
a,=b,=d, =0
c; absorbed.

A%a?
b, = (Az—az) Ho
a2
= (Az—az) Ho
For the potential between the inner and outer cylinder, we have:

U_cos¢(( Y s + () )

U= (A2 )H cosp(s + A%s71)

SURFACE CURRENTS
Surface currents will run along equipotentials and help to visualize current flow throughout the two
cylindrical shells.

Magnetostatic Boundary Condition: [ /at U,) — /6t (Ul)]s - [ /as U,) - /as (Ul)]t =

Note: Coordinate system defined as < 1, §, t>
Note: U, defined as the potential in the region that the positive normal points from the surface. U,
defined as the potential in the other region.

i) Inner Radial Surface
Normal: S

Tangents: ¢ and 2

U, = (AZ )H cosp(s + A%s71)
U, =-H scosqb

(%32 W) =5, W6 = [ 4 W) =/ 5 WD] 2 = Ky + K2

=1%/5, W) = 9/5, WD|ls=a

=0 (since neither U, or U, depend on z)

[/Sa¢< )H cosp(s + A?s 1)> 6/56¢( Hscosqﬁ)]ls a
- [ /6¢< Az—) H,cos¢p(1 +A23—2)> _ 6/a¢ (—Hocosqb)] ls=a

K, =-— [(- (AZ )H sing(1 + A%a ‘2)> (H, smd))]
K, = H, sm¢[( )+ 427 +1]

K, = Hysing [(a T;A:z 2) ﬁziﬁ]

K,=H sm¢ (A +A2)
K, = 2( )H sing




iii)

= A? . o
K=2 (m) HoSlTl¢ Z
Outer Radial Surface

Normal: S
Tangents: ¢ and 2

U, =0
2
U, = (a—) Hycosp(s + A%s71)

A2—q2

(%32 W) = /5, W6 = [ 4 W) =/ 5 WD] 2 = Ky + K2

Ky = [6/62 ;) - a/az (Ul)]|s=A
Ky =0 (since neither U, or U, depend on z)

K, =— [6/5 ¢ ((Aza—_zaz) H,cosp(s + Azs‘1)> - a/s 9 (0)] ls=a
K, = - [‘ %o ((A—) Hocos@ (1 + AzS_z))] =
(s

K, = =2 () Hysin
K=-2 (Aza_zaz) H,sing z

Inner End-Cap Surface (z =b)
Normal: Z
Tangents: §and ¢

U,=0
U, = —H,scos¢

[a/s d¢ (Uz) = a/s op (Ul)] §— [a/as U,) — a/as (U1)]$ =KS+ K¢$

Ks = [6/5 a¢ (Uz) - a/s a¢ (U1)]
K= 19, NORL/N (~H,scosg)]

K, = —6/a¢ (—H,cos¢)
K, = —H,sing

%3

%3

%3

Ky =~[2/55 W) = 9/5 W)
Ky = —[a/as 0) — a/as (—Hoscosgb)]

Ky = 6/65 (—H,scos¢)
Ky = —H,cos¢p

K= —H,sing §—H,cosp ¢

Inner End-Cap Surface (z =-b)



Normal: Z
Tangents: §and ¢

U, = —H,scos¢
U, =0

[a/s d¢ (Uz) = a/s a¢p (Ul)] §— [a/as U,) — a/as (U1)]$ =KS+ K¢$

Since U2 and U, have simply switched from iii), we can say:
K=H »sing $+H,cosp ¢

V) Outer End-Cap Surface (z =b)

Normal: Z
Tangents: §and ¢

U, =0
U, = (AZ )H cosp(s + A%s71)

[a/s d¢ (Uz) = a/s a¢p (Ul)] §— [a/as U,) — a/as (U1)]$ =KS+ K¢$
Ks = [6/5 a¢ (Uz) - a/s a¢ (U1)]
K, = [a/s ¢ 0) - /s ¢ (( )H cosp(s + A?s —1)>]
= =g ((Az az) Hocosp(1 + 4% -2)>
K, = (Az ) Hosing (1 + A%s72)
Ko = =155 W) =55 Wy)]

2
Ky = a/as ((#) H,cosp(s + Azs‘1)>
2
Ky = (ﬁ) H,cosp(1 — A%s72)

a? [ 26-2) & a? 2.-2\ 4
= (m) Hysing(1 + A%s™%) § + (Az_az) H,cosp(1 — A%s72) ¢

=

vi) Outer End-Cap Surface (z =- b)
Since U, and U1 have simply switched from v), we can say:

K = — (=) Hosing (1 + A%572) § — (2=) H,cosp(1 — 4%572) §

BASIC DESIGN

The design of the RFSF is based upon a cos-theta winding pattern. It is composed of 2 natural nylon shells,
one inside the outer, surrounded by an aluminum cylindrical shell which acts as magnetic shielding. Natural
nylon is chosen for the inner two shells because it is non-conductive and, thus, will not affect the magnetic

field created by the coil.



ALUMINUM MAGNETIC SHIELD
The skin depth of aluminum is calculated to ensure that is will be thick enough to act as a magnetic shield for
the RFSF.

2
In normal cases, § = —p,
wu

For Aluminum: p = resistivity = 2.82x10780 - m
w = frequency = 183247.185 Hz

1 = permittivity = 1.2566650x107¢ H/
Thus, § = 0.00049489 m = 0.019484 in

For the experiment, an aluminum cylindrical shell of 0.375 in = 19.25 - § thickness is chosen to ensure that
no magnetic field leaks from the RFSF into any other portion of the experiment.

Due to material availability, the inner diameter of the aluminum shell is 15.5 in, which correlates to an outer
diameter of 16.25 in (which provides for the 0.375 in wall). It’s length is 15.75 in.

NYLON SHELLS DIMENSIONS

The non-conductive nylon shells will serve as placeholders for the wire windings of the cos-theta coil. We
want to leave 0.005 in of ‘play’ between the aluminum shell and the outer nylon shell. Therefore, the outer
diameter of the outer nylon shell is 15.4900 in. The wire windings here are completely inset into the nylon
material. The standard diameter of 18 gauge wire is 1.024 mm. However, in actuality, copper wire has a very
thin coating of protective material on it. We estimate the realistic diameter of 18 gauge wire to be =

1.1mm = 0.043307 in. The center of the wires on this surface will form the s = A boundary.

Thus, 24 = (15.49 2 (""’423307)) in
A = 7.723346 in

We require that the wires at the s = a boundary to be spaced to meet the condition Ax;, = 4Ax,,;.

Uin = ninAI = HoXn = Hon AXin

2 2
Ugue = 1Al = (=) Hoxn (1 + A2572) = () Hon Axgu(1 + A572)

Since Al doesn’t change throughout the coil, we can compare the two potentials to solve for the optimal value
of inner boundary, a, for the RFSF.

Hon Ax;, = (Aza—_zaz) Hon Axg, (1 + A%s72)
= () (1+ %)

4(A?—a?) = A2 + a?

3A%? = 5a?

a= \E A =5.982478in
On this boundary, the wires will be halfway inset into both the inner nylon shell and the outer nylon shell. We

also want to leave 0.006 in of ‘play’ between the two nylons cylinders, divided evenly between them.
Therefore, the inner diameter of the outer nylon shell will be 2a + 2(0.003 in) = 11.97096 in and the outer



diameter of the inner nylon shell will be 2a — 2(0.003 in) = 11.95896 in. The only condition requirement of
the inner nylon shell is that it is durable. Thus, the wall of the inner nylon shell will be 0.5 in thick,
correlating to an inner diameter of (11.95896 — 1)in = 10.95896 in.

The length of the nylon cylinders in the RFSF are chosen to be = 0.125 in shorter than the aluminum shell
such that wire windings around the nylon end-caps will be confined within the length of the aluminum shell.
Thus, their lengths will be = 15.625 in, which also provides an approximate 1:1 ratio of length to outer
diameter for the RFSF.

REVIEW OF SPECS
Aluminum: 0.D.: 16.25in
I.D.: 15.5in

Length: 15.75 in

Outer Nylon: 0.D.:. 15.49in
ID.: 11.97096 in
Length: 15.625 in

Inner Nylon: 0.D.: 11.95896in
ID.: 10.95896 in
Length: 15.625 in

FLIPPING THE NEUTRON

The RFSF will sit in a static magnetic field with constant strength of B = B,x = 10G x. Now, we must match
the Larmor frequency of a neutron such that it completes a full rotation from the “up” to “down” position.

Larmor frequency = w, = —yB wherey = gN”N/h

For aneutron: gy = —3.82608545 (correction in quantum mechanics)

Uy = 5.05078324x1072%7 ]/T (nuclear magneton for a neutron)
h = reduced plank's constant = 1.054571628 x 1073* ] - s

~ w;, = 183.247185 kHz

="/, =29.1646953 kHz

To calculate the velocity of the neutron, we focus on neutrons with a de Broglie wavelength of 1 = 5A.

p=mnv=h//1

For aneutron: m, = mass of a neutron = 1..67492729 x 10727 kg
h = plank's constant = 6.2606896 x 1073 ] - s

v = === 791.206644 ™/

mn

Given this velocity, the neutron will pass through the RFSF in At = -, where L is the distance between the

£
‘li
1562541575 ) in = 15.6875 in. Therefore, At =

center of the wires on the nylon end-caps. Thus, L = (
503.614 us.



Since the neutron will flip from 0 radians (up) to m radians (down), the rate of flip of the neutron needs to be
wp = % = 6.2381001 kHz.

Next, we need to calculate the rotational magnetic field required to induce this rate of flip in the neutron so
that it will complete only a single, complete flip during its time in the RFSF.

Wp = —YBpo, = 6.2381001 kHz

WF

+ Bro = =2 = 03404199 G

From the neutron’s perspective, this is the maximum value of the magnetic field needed for it to complete one
rotation. In reality, we need to generate twice this amount of magnetic field. Therefore, the resonant
frequency field needed for the neutron spin flipper is Bgr = 2B,,.e'“ and will have a maximum value of

B, = 2B,,; = 0.6808399 G.

In order to compare this to potential, we convert the B-field to its H-field counterpart:

Hy =50/, = 541795214/,

WIRE WINDINGS AND INDUCTANCE

To maximize the number of RFSF windings, and thus create the most uniform magnetic field possible, there
will be 52 wire windings around the inner nylon cylindrical shell. According to our 4:1 winding ratio
requirement, there will be 416 windings around the outer cylinder (208 per outer half). Ideally, this will
establish a spacing of Ax;,, = 4Ax,,; at the s = a boundary. In actuality, the outer wire placements on this
boundary are adjusted to create an equal spacing between all wire points (inner and outer). In both the inner
and outer cylinders, wires will run along evenly spaced equipotentials for maximum result.

Inner Cylinder Wire Placement
We first look at the inner wire points on the s = a boundary. Since the wires will wrap around the inner

cylinder such that they are parallel with the y-axis, we have Ax;,, = 0.3039099 m/52 = 0.00584448 m. After

the adjustment mentioned above, the smallest value of Ax anywhere on the RFSF will be Ax% = 0.0011689 m,
which is enough space to allow for the winding of 18 gauge wire.

The maximum current depends on Ax,,.

U = H,x,, = nAl where x,, = n Ax
~ Al = H,Ax = 316.647945 mA

Also, the %, y wire point coordinates on the end-caps of the RFSF are known due to Ax;, (See Appendix A).

Outer Cylinder Wire Placement

Now we look at the outer wire points on the s = a boundary. Remember that we require four times the
number of outer wire points compared to inner points on this boundary. Note that we also want an equal Ax
between all wire points (inner and outer) at the s = a boundary. Thus, the s = a wire placements are slightly
shifted on the outer nylon shell to accomplish this (See Appendix B, Part I).

We next need to determine the value of Ax,,,; on the boundary s = A (See Appendix B, Part II).
2
Here, U = nAl = (ﬁ) Hyx, (1 + AZ/SZ) where x,, = nAx

2

o A =2 () HoX gy

A2—-q2



Al

2
2(—A2 _az)H,_-,

o DXy = =0.00194814m

Now that the wire spacing on the boundary s = A is known, calculations for the x and y coordinates can be
made on this boundary.

It's important to note here that not all end-cap wire segments that originate on the s = a boundary converge
to the s = A boundary. This is due to the path of equipotentials which originate close to the x-axis in the
outer nylon shell. These few equipotentials cross the x-axis and converge back onto the s = a boundary. To
emulate this, we will place pegs on the x-axis of the outer shell to run wires along. To calculate their
positions:

i) U(s =a) =U, = known
. 2 2
ii) U(x,y=0)=UA=(ﬁ)Hox(1+A/x2)

o, =t = () e (144,
X (1 + Az/xz) - a;]a

(Az—aZ)Ho

Solving this via the quadratic formula: x =

This formula gives the value of x on the x-axis for equipotentials (and thus wire segments), which start at the
s = a boundary and do not converge to the s = A boundary.

INDUCTANCE

To calculate the inductance of the inner windings, we must first calculate the flux through each wire loop
such that ® = (&, + ®,+...+D;) = AI(l; + [, +... +];), where (I; + I, +...+];) = L, the total inductance
inside.

The flux through any single loop of the inner cylinder is ®; = [J, B-dS= JIs p,H - dS. The surface of each of
these loops runs in the yz-plane and the normal to the surface points in the same direction as the H-field.

Therefore, [ {1, H - dS becomes JI; moH dS. Since the H-field is constant across the surface, we have

@, = u,H, ffs dS = u,H, A;, where A; is simply the area of the loop. Using this, we can calculate flux running

through each loop. The sumis @;, = 0.00034232 webers. The corresponding inductance for the inner coil is
L, = 1.081064 mH.

To calculate the inductance of the loops around the outer cylinder, we first have to look at the flux through
these loops. Notice that all of the flux through the top half of the inner cylinder runs entirely through the top

half of the outer cylinder. The ratio of wires out to in is exactly % = 4. The same goes for the bottom half of

the flipper as well. Therefore, ®,,; = 4®;, = 0.00136927 webers. The corresponding inductance for the
outer coil is L,,; = 4L;, = 4.324256 mH.



The total inductance of the coil will be L;,; = L, + Loy = 5.405319 mH.

The total inductance can also be approximated by integrating over the nylon cylinders.

2E 0 —2
In General: L==andE =2 [ff, |[H| av
Since H doesn’t depend on z, L =22 [ |17|2d5
) 12 S
i) Inner Nylon Cylinder

L =52z ff; Hy dS
L—@zH ffznsdsdgb
L—';;’ZHZHO Jy s ds

L= %nazz H,?

ii)  Outer Nylon Cylinder 2
L=tz ], [ (255) H, [cosp (1 %) 8 — sing (1 +% qE]] ds
(=R
L=ﬂnz(A2“_2a2 Hy? [ [1——2) +(1+—2)]st
L=t () it (a7 ) - (- 2)
L=t () it (G- o))

[coszqﬁ (1 - —2) + sin?¢ (1 += ” sdsd¢

Summation Integration Percent Difference
Inner 1.081064 mH 1.059157 mH 1.64803%
Outer 4.324256 mH 4.253573 mH 1.64803%
Total 5.405319 mH 5.316966 mH 1.64803%
CAPACITANCE

The capacitance required to drive the circuit can be calculated from the inductance of the coil.

L = — where w = w, = 183.247185 kHz
w=C

€ = = = 5.509396 nF
w*L

We will choose a capacitor to match this value and connect it in series with the circuit. This will allow for
minimal driving power of the RLC circuit over time.

WIRE GAUGE AND RESISTANCE

Our smallest value of Ax on the three boundaries above is Ax = 0.0011689 m (occurs on the s = a boundary
after slightly shifting the wire placements here). As mentioned before, 18 gauge wire fits in this space
comfortably with a diameter of 0.001024 m (+thin coating).

The resistance of the coil can be determined from the wire gauge. 18 gauge copper wire has a resistance of
0.02095 Q/m. We multiply this by the total length of wire inside to get a resistance of R;, = 1.385198 Q
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(Appendix A). Repeating the process for the outer loops, we get R,,,,; = 4.230995 Q (Appendix B). This
includes those wires which do not converge to s = A from s = a on the end-caps.

The total resistance of the coil is R;,; = R, + Roye = 5.616194 Q.
QUALITY FACTOR

We calculate the quality factor of the circuit as a measure of its efficiency. It compares the ratio of the coil’s
inductive reactance to its resistance at the resonant frequency.

w.

Q= TL = 176.3667

POWER
We need to know the power required to fully charge the capacitor over 400us. We also need to know the
driving power of the circuit after this occurs.

Reactance
Resistance: Xg =R =5.616194Q
Inductive Reactance: X, = wL =990.509587 Q

Capacitive Reactance: X, = —i = —990.509587 Q

Energy stored in the RLC circuit will slosh back and forth between the capacitor and inductor after the circuit
has been fully charged.

Energy Stored

1

Inductor: E, = >LI? = 270984669 1
Capacitor: Ec = -CV? = 270984669 1
Slosh Energy

Slosh: Egiosn = E, = E¢ = 270.984669 1

The ramp power (power required to fully charge the capacitor in 400us) is the sum of the power lost to
resistance and the power needed to charge the capacitor.

1

Real Power (power lost to resistance): Proar = EIZR = (0.281556 W
Charge Power (power to charge capacitor): Peharge = % =0.677642 W
Ramp Power: Bramp = Prear + Penarge = 0.95901809 W

So, the RFSF will be held at B4, for the first 400us and at P, thereafter. The RLC circuit will then operate
at driven, damped harmonic resonance.

REROUTE DESIGN POTENTIAL
This design removes the inner nylon cylindrical shell entirely, which is preferred. To do this and still
maintain our desired magnetic field, we need to reroute the inner potential around through the outer loops.

Calculating the potential to be rerouted (solving Laplace’s Eq.): VU = 0

Note that the solution for potential does not depend on z.
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General Solution:

Boundaries:

U=a, + byn(s) + Y=y (ars® + brs™)(cxcos (k) + dysin(kep))

@s=a: U = —(—H,scos)

@s = A: U=0

Due to boundary conditions, a, = d; = 0.
Also due to boundary conditions, we are only concerned with solutions in which k = 1.

Remaining Solution:

U = b,In(s) + c;cosp(ass + bys™1)

Let ¢, be absorbed by a; and b;.

Remaining Solution:

U = b,In(s) + cos¢p(a;s + bys™1)

Compare each side at the boundaries:

i) H,scos}|s=gq = [b,In(s) + cos¢p(ass + b;s™)]|5=q

H,acos¢p = [boln (a) + cos¢ (ala + %)]

Obviously, b, = 0

b
Hya=aja+=2
a

b
a,a =Hya — :1
b
a, =H, — a—;
i) Ols=a = [boIn(s) + cosp(ays + bys™)]ls=a
= by
0= [0 + cosg (alA + A)]
0=aA+2
L A
a, = —A—i
Plugging this back into i): — % =H,— Z—;
by b
o=~ -t
a? A?
by (_ 42q2 Azaz) = Mo

Going back to our original equation for potential (k=1 solution):
U=a,+b,In(s) + (a;s + b;s 1) (c;cosp + d;sing)

With variables:

b = = () Ho

a,=b,=d; =0

c; absorbed

b, = (Lazz) H,

A2-q

a =\

For the rerouted potential through the outer cylinder, we have:

)i

e o (- () s+ (22) 1)
a—z) Hycosp(—s + A%s™1)

Ureroute = (

A2—-q2

The total outer potential will now be:

12

AZ%a?
AZ2-q2

M
(i)

)i

(across s = a boundary)



b
N
Mg
N

)Hocosdb(s + A%2s™h) + (A

N
N
Mg
N

)Hocosqb(ZAzs‘l)

A2—-q2

—a

A%q?

(A2 2)Hs tcos¢p
—a

REROUTE WINDINGS

Windings can be calculated as before for the outer nylon shell. Their positions will change with the new
design to compensate for the removal of the inner loops. Wire points that start at the s = a boundary will
simply converge to different points on the s = A boundary. This allows the same grooved nylon cylinders to
be used for both designs, whether or not the inner nylon cylindrical shell is indcluded. Appendix C lists the

winding points on one end-cap.

SURFACE CURRENTS: OUTER ONLY
Magnetostatic Boundary Condition:

Note:
Note:

Coordinate system defined as < #, §, £ >
U, defined as the potential in the region that the positive normal points from the surface. U,

HOCOS¢(S + Azs_l) + Ureroute

2
za_az) H,cosp(—s + A*s™1)
)Hocosdb(s + A%s7l — s + A%s71)

[a/at (U2) - a/at (Ul)]§ - [a/as ©2) - a/as (Ul)]f =K

defined as the potential in the other region.

i) Inner Radial Surface
Normal: S
Tangents: ¢ and 2

(%5, Wa) =95, WD]® = [%/5 5 (U2) =

Ky = [6/62 ;) - /62 (U1)]|s a
0

9/ o0 W) 2 =Ky +K,2

(since neither U, or U, depend on z)

= g () s 2c050) )1

K, = [ /6(]5( (Az_az)H s C05¢)] ls=a
Kz=2(A2 2)H a~2sing

A2-q?

K,=2 (AZA )H sing

1?=2(A2A )H sing 2

ii) Outer Radial Surface
Normal: S
Tangents: ¢ and 2
U,=0
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U, =2 (%) H,s tcos¢p
(%32 U =23, W06 = [ 5 U = 2 5 (UD] 2 = Ky + K,2

Ko =[2/5, W) = /5, W)]ls=a

Ky =0 (since neither U, or U; depend on z)
AZ 2

K,=— [0 - 6/S 6¢( (AZ—aZ)H s~ cosgb)] ls=a

K= %54 (2 (5255) Hos 2cos®) |l
KZ=—2(“ ) HoA2sing

A2

K,=-2 (AZ )H sing
)H sing Z

iii) Outer End-Cap Surface (z =b)

Normal: Z
Tangents: §and ¢

U, =0
2,2
U, =2 ( 4a )Hos‘lcosgb

A2—q2

[a/s d¢ (Uz) = a/s a¢p (Ul)] §— [a/as U,) — a/as (U1)]$ =KS+ K¢$

Ks = %5 0 Wa) =5 5 W]

Ks = [6/5 a¢ (0) - /s agb( (Ai aaz) Hos‘lcosgb)]
K = ‘6/a¢( () Hos 2coso)

K, = 2( )H s~ 2sing

%3

Ky = _[a/as W2) - a/as (Ul)]

Ko == (%55 © =25, (2 (57%) Hos*cos0)]
Ky =2/ 65( (Ai—aaz)H 57 cose)

Ky = —2( )H s2cos¢

1?:2('42 Z)H s~ sin¢§—2(Lazz)Hos‘zcosqb$

A2-q? A2-q

iv) Outer End-Cap Surface (z =- b)
Since U, and U, have simply switched from iii), we can say:

K=-2 ( )H s™2sing § + 2 (%) H,s %cos¢ ¢
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COMSOL CONVERSIONS
L Design: Inner & Outer Shell

a. OuterRadial: K = -2 ( )H sing Z

b. InnerRadial: K =2 ( )H sing Z

c. Inner End-Cap: K= —H,sing §—H,cosp ¢ (z=0D>)

Inner End-Cap: K = H, singb $+H,cosp ¢ (z=- )

e. Outer End-Cap: K = (A2 )H sing(1 + A%s72) § + ( )H cos¢ (1 - —) ¢ (z=bh)
- 2 .

f.  Outer End-Cap: K = (A2 )H sing(1 + A%s72) § — ( )H cosq§( ‘:—2) ¢ (z=-b)

II. Design: Outer Only

— 2

a. Outer Radial: K =-2 (#) H,sing 2z
— 2

b. Inner Radial: K = (AZA az) H,sing 2
- 2 2.2 ~

c. Outer End-Cap: K = (AAZ = 2) H,s %sin¢g § — 2 (%) H,s %cos¢ ¢ (z=b)
N e e X

d. Outer End-Cap: K = -2 (m) H,s™2sing § + 2 (Az_az) Hys™2cos¢ ¢ (z=-b)

K = S

Q

(Az_az) [s0 (1+4) Ccos

§- COSPXT + sin Y
P . — SN PE + cos PY
IN CARTESIAN:
L. Design: Inner & Outer
a. Inner Radial:
= A? . N
K =2 (Az_az) H,sing z
A2 Y A
K 2 (AZ az) ; z
b. Outer Radial:
— 2
K = =2 (=) Hysing 2
— aZ ~
K=-2 (AZ az) Ho 2
c. + Inner End-Cap:
K——Hsmqbs—Hcosgbgb (z=0D>)
= (—H,singcosp + Hysingcosdp)x + (—H,sin’¢p — H,cos?¢p)9
K=-H,y
d. - Inner End-Cap:
K H,sing § + H,cos¢ ¢
= (H,sinpcosp — H,sinpcosp)x + (H,sin?¢p + H,cos%p)P
K=+H,y
e. + Outer End-Cap:

+5¢9) + e (1-5) (=55 + cd9)|

et (oo (14 2) oo 15
- G 2[1+2) (-2

= () 2 =2 () n, 22
Kyy=(A2“ —)H [s¢s¢(1+ )+c¢cq§(1—?]f/
K,9= () Ho (3) [ (145) + 2 (1-5)]3
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f. - Outer End-Cap:
K = — (=) Ho [s6 (1+ )(c¢fc+s¢9) +cp (1-5) (=505 + cd9)]

== )1 3()] 7 = -2 () w5z
yy——(Az_az)Ho(slz)[y (1+5) + 22 (1_5_)19

II. Design: Outer Only
a. Inner Radial:

K=2 (A2A_2 2) H,sing z
K=2 (AZA_Z ;) H,2 2

b. Outer Radial:
— 2
K = =2 (=) Hysing 2
— a2 y A
K =-2(55) Hol 2

c. + Outer End-Cap:

K =2 (55) H, () [sp(cp2 + 5¢9) — ch(~s¢% + cpP)]
k= 2(22) 1, () agert

2_

Aiz—a;) H, (:_Z) x
K,9 = 2 (5255) H, (%) [spse — ceg]
K,9 =2 (;‘f_";) Hy (3) 2 - 221

d. - Outer End-Cap:
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