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Chapter 2 X-ray diffraction and reciprocal lattice 
 
I. Waves 
 
1. A plane wave is described as 
                         Ψ(x,t) = A ei(k⋅x-ωt) 

 A is the amplitude, k is the wave vector, and ω=2πf is the angular frequency. 
 
2. The wave is traveling along the k direction with a velocity c given by ω=c|k|. 
Wavelength along the traveling direction is given by |k|=2π/λ. 
 
3. When a wave interacts with the crystal, the plane wave will be scattered by the 
atoms in a crystal and each atom will act like a point source (Huygens’ principle).   
 
4. This formulation can be applied to any waves, like electromagnetic waves and 
crystal vibration waves; this also includes particles like electrons, photons, and neutrons.  
A particular case is X-ray.  For this reason, what we learn in X-ray diffraction can be 
applied in a similar manner to other cases. 
                  
II. X-ray diffraction in real space – Bragg’s Law  
 
1. A crystal structure has lattice and a basis.  X-ray diffraction is a convolution of 
two:  diffraction by the lattice points and diffraction by the basis.  We will consider 
diffraction by the lattice points first.  The basis serves as a modification to the fact that 
the lattice point is not a perfect point source (because of the basis).    
 
2. If each lattice point acts like a coherent point source, each lattice plane will act 
like a mirror. 
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2. The diffraction is elastic.  In other words, the X-rays have the same frequency 
(hence wavelength and |k|) before and after the reflection. 
 
3. Path difference between two consecutive planes is 2d sin θ, where d is the 
distance between the planes.  For first order constructive interference, 
                                           2d sin θ = λ              (Bragg’s Law) 
Higher order diffraction is possible.  In this case, the peaks will be labeled as (nh,nk,nl).   
 
II. Fourier transformation of crystal and reciprocal lattice vectors 
 
1. Define reciprocal lattice primitive vectors b1, b2, and b3 as: 
 
 
 
 
 
2. Relationship between real space primitive vector a and reciprocal space primitive 
vector b: 
                                         ai⋅bj = 2πδij 
 
3. Can generate reciprocal lattice G: 
   G= l b1 + m b2 + n b3      (l, m, n are any ingtegers) 
 
4. In general, the longer is a, the shorter is b.  That’s why b is called the reciprocal 
(primitive) vector. 
 
5. 
 eiG⋅r has the same periodicity of the crystal because  eiG⋅(r+R)= eiG⋅r eiG⋅R = eiG⋅r. 
 
6. Since eiG⋅r has the same periodicity as the crystal, should have a 
value independent on the choice of the cell.  Suppose we translate the cell through a 
vector d,   
 
 
 
 
 
 
 
 
7. Important: 
 The set of functions {eiG⋅r, G= l b1 + m b2 + n b3} form a complete, orthonormal 
set for any periodic function Ψ(r) following the same periodicity of the crystal Ψ(r)= 
Ψ(r+R). 
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This is the “Fourier transformation” of the periodic function Ψ(r).   
 
8. We can do the inverse Fourier transformation to find AG: 
 
 
 
 
 
 
 
 
 
 
 
 
III. Condition of diffraction in terms of reciprocal lattice vector G. 
 
1. Consider two lattice points. 
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2. Extend above to a lattice, we can replace r with a lattice vector R.  Therefore the 
condition for diffraction is given as 
                    R⋅ (k-k’) = 2mπ 
From the properties of reciprocal lattice vector, we know that 
                      k-k’ =G 
With ∆k = k’-k, we have 
                     ∆k  =  G                        (-G → G) 
 
3. Laue condition   
    k-k’ = -G     ⇒   k’ = k+G 
                                    ⇒   k’2=k2+G2+2k⋅G      
For elastic scattering, | k’|=|k|  ⇒ k’2=k2.  Therefore: 
                                   G2+2k⋅G = 0  , or 
 
 
                             
This is known as the Laue condition for elastic X-ray diffraction. 
 
4. Geometric interpretation of Laue condition: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In other words, diffraction (constructive interference) is the strongest at the 
perpendicular bisecting plane (Bragg plane) between two reciprocal lattice points.  This is 
true for any type of waves inside a crystal, including electrons.  Note that in the original 
real lattice, these perpendicular bisecting planes are the planes we use to construct 
Wigner-Seitz cell. 
 This interpretation is especially useful if the wave has all different k and you want 
which of these k’s will be diffracted by the crystal.  This is the case for the electrons 
inside the crystal. 
 
IV. Brillouin zones 
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1.   Following the Laue condition, it is important to determine all the perpendicular 
bisecting planes in the reciprocal lattice.  For the neighbors nearest to the origin, this is 
just the Wigner-Seitz cell of the reciprocal lattice and called the first Brillouin zone. 
 
2. Example: 
 
 
 
 First Brillouin zone: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Second Brillouin zone: 
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Third Brillouin zone: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Higher Brillouin zones: 
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3. The first Brillouin zone is the set of points in the reciprocal space that can be 
reached from the origin without crossing any Bragg plane.  The (n+1)th Brillouin zone is 
the set of points that can be reached from the origin by crossing n-1 Bragg planes, but no 
fewer. 
 
4. The Bragg planes enclosing the nth Brillouin zone correspond to the nth order 
diffraction. 
 
5. The higher order the Brillouin zone, the more the zone is fragmented.  However, 
in all cases, if we translate these fragments according to the crystal symmetry, they will 
all look like the first Brillouin zone (this process is called reduced zone scheme).   
 
V. X-ray refraction of the basis. 
 
1. We first assume the Laue condition is satisfied.  Inclusion of basis means the 
assumption of point sources at the lattice points have to be modified.   
 
2. Scattering within the basis:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Scattering (i.e. intensity of the diffracted ray) by the infinitesimal element 
depends on: 
            (i)  electron density n(r) at the location of the infinitesimal element, and 
 (ii) the phase difference ( =(k-k’)⋅r) with respect to diffracted ray at the 
origin. 
 Therefore we can define scattering amplitude (proportional to the amplitude of 
the oscillation of electric or magnetic field of the total diffracted ray) as:   
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3. Since we are considering only the case of constructive interference for the lattice, 
i.e. k-k’=G.  We can also limit the above integration to within the cell.  Hence the 
scattering amplitude becomes: 
 
 
 
 
 
SG is called the structure factor. 
 
4. Suppose there are s atoms in the basis and the positions of these atoms are given 
by rj (j=1, 2, …, s).  We can now write the total electron density n(r) as superposition of 
electron concentration functions nj associated with each atom j in the basis: 
 
 
 
And the scattering amplitude (or the structure factor) can be written as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fj is called atomic form factor, depends only on the type of element that atom belongs to.  
 
5. In summary, the total scattering amplitude is given by: 
       
 
 
 
 
 
 If there is only one lattice point in the basis, then SG=1 (e-iG⋅R=1). 
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6.  Example: 
 Consider bcc as simple cubic with a basis at {0, (1/2,1/2,1/2)} 
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a

2  b l  bk  bh G                         

lattice), cubic simple  therespect to(with  (hkl)peak n diffractio heConsider t

k̂
a

2 
a
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