Numerical Solution to Laplace Equation: Finite Difference Method
[Note: We will illustrate this in 2D. Extension to 3D is straightforward.]

Suppose seek a solution to the Laplace Equation subject to Dirichlet boundary conditions :
0°D(X, V) . o°Dd(X,y)
OX oy

We discretize the (x,y) region of interest into a grid, with equal Ax = Ay = h grid spacings.

ﬁzq)(x’ y) = O subject to @ specified on the boundary

As we showed on HW #1, centered difference approximations to the partial derivatives at
a grid point (i,j) are :

0°D(X,Y) - D20, +D; 0°D(X,) - Dy =20 ; +D;
> ~ 2 2 ~ 2
OX (i,]) h ay (i,]) h

Thus, the discretized approximation to the Laplace Equation becomes :

(Di+1,j _2(Di,j +(Di—1,j n (Di,j+1 _ZCDi,j +(Di,j—1
h° h*

~0

1
= ©;; = Z[(Dm,j T+ P +CDU'—1]

Thus, we see that under this |
approximation the value of ® at grid PO ‘ _______ PO Numerical Analysis:
point (i,j) depends on the values of ® at

“five-point stencil”
its four nearest neighboring grid points.

-0 0 -0 “Boundary value problem” becomes :
I i |
: [1] @ “boundary values” specified on
|. ® ® ‘. grid points on the boundary
-—|-——————————----»:r —————————————— ----> x
. ® o ’ [2] Want to be able to numerically
: : calculate the values of @ at the interior grid
®--0--0--90 points.

Because @ at grid point (i,j) depends on its four neighbors, we can iteratively solve
for @ at the interior grid points via the following iterative scheme (“relaxation”) :

[0a] Fix the initial values of ® on the grid boundaries subject to the boundary values.
[Ob] Set/choose initial values for the interior grid points.

[1] Successively sweep through all of the interior grid points, where on the (m+1)t
sweep (iteration) through all of the grid points :

Jofor

I, j+1

+@

O} =0 +%[((D'm + O .,,-_1)—4@??,-]

i+1, j i-1,]

=@/ + AD]
7 AN

value from previous residual of mth
iteration iteration

Basic “Jacobi Iteration” scheme :
Step O: Fix the boundary values; choose initial
, guesses for the interior points.

o ‘ Iteration 1: Calculate @ at all of the interior grid points
] . according to the formulas below. The values of @ at
G S 1----> X all of the interior grid points have been “updated”.

Iteration 2: Re-calculate @ at all of the interior grid
points using the “updated” values from Iteration 1.
Again update the values of ® at each grid point.

Continue N times ...

O} = +%[(q)in11,j + O)+ ((D?,]m + cp;‘jj_l)_4q)if?j]

/M m
=O;+ ACDH After many iterations, the residual will
7 ™ become small (i.e., the solution will

' residual of mt ;
va/ueg;i;"ﬁf;fwous rorat c{n have “relaxed” to its true value).
Notes :

[1] Under this scheme, the values of ® on the boundary are not modified.

[2] The accuracy of the solution will, in general, depend on the grid spacing h.

[3] The accuracy will, in general, improve with the number of iterations N, but is
subject to [2]. (The CPU time will also, in general, scale with N.)

Extension to 3D is straightforward. Have a 7-point stencil, where the value of ® at
(i,j,k) depends on its six neighboring points:
(i+1,j,k), (i-1,j,k), (i,j+1,k), (i,j-1,k), (i,j,k+1), (i,j,k-1)

Jacobi iteration is the simplest/most-elementary approach to a numerical solution of
the Laplace Equation via relaxation.

More sophisticated methods (e.g., Gauss-Seidel, Successive Overrelaxation, Multigrid

Methods, etc.) exist which improve both the accuracy and speed towards
convergence.

See, for example, Numerical Recipes in C++.

