PHY 611 — Electromagnetic Theory I
Problem Set 1
Due: Wednesday, August 29 at 10:00 a.m. at the start of class

This first problem set will review a number of different mathematical techniques which we will use
frequently the rest of the semester.

Problem 1: Cylindrical Coordinates [5 points]

(a) Consider the cylindrical coordinate system, (p, ¢, z). Derive expressions for the cylindrical
unit vectors, (p,,%), in terms of the Cartesian unit vectors, (Z,9,2). Then, using these
results, show that
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b Consider a vector written in cylindrical Coordinates, V = [/ ﬁ + [/ 5 + [/22 The gradient
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operator n Cylindrical coordinates is
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Show, by explicitly calculating the dot product of V with V, that the divergence of V is
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Problem 2: Spherical Coordinates [5 points]|
(a) Consider the spherical coordinate system, (r,6,¢). Derive the following expressions relating

the spherical unit vectors to the Cartesian unit vectors
7sin @ cos ¢ + écos@cos¢ — g%sin(ﬁ,
7sin @ sin ¢ + écos@sin(b + <;Aﬁcos¢,

7cosf — fsinb.
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(b) Derive expressmns for 9/0x, 0/0y, and 0/0z in terms of d/0r, 9/00, and 0/0¢. Hint: Equate

Problem 3: Index Notation [10 points]
Show, using index notation, that

Vx(AxB)=ANV-B)—B(V-A)+(B-V)A-(A-V)B
You will probably find the following identity useful: €x;j€rem = 0i00jm — dimOs;-

Problem 4: Vector Calculus and Differentials [15 pomts]
Suppose V - B = 0 for |Z| < R. Show that one solution of VxA=Bis
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Hint: Calculate V x A. Then, let § = tZ and calculate %g(tf) in terms of ﬁg acting on B(7).



Problem 5: Dirac Delta Function [10 points]
Suppose we define a sequence 6, (z) = n/(2 cosh? nz).

(a) Show that V n
/ dz 6, (z) = 1.

(b) Show that
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da’ §,(2) = 3 [1 4 tanhnz| = u,(x),
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where
. 0, =<0,
Ay wn(®) = { L a0,
which is a representation of the Heaviside step function.
(¢) Prove the identity
O(x —a)
)= 3 @
a, g(a)=0, g'(a)#0

Hint: Decompose the integral [*°_ dz f(x) §(g(x)) into a sum of integrals over small intervals
containing the zeros of g(z).

Problem 6: Hyperbolic Trigonometry [5 points]
Show that
sinh? z + sinh? y = sinh?(z — y) + 2 cosh(z — y) sinh zsinh y.

Problem 7: Integrals [20 points]
Work the following problems by hand. You must show sufficient work such that I am convinced you
did not use Mathematica, Maple, etc.

(a) Show that for a real-valued # and 5 > 0

/Oo exp {—5(1’ + iy)z} dz = \/%
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where, as usual, ¢ = /—1.
(b) Consider the following integral (which, actually, represents a wave packet in one-dimensional
quantum mechanics)

Y(x,t) = /_Z% <#) v exp [—%] exp [—ikxg| exp [z <er - %kgtﬂ )

Show that 9 (z,t) can be rewritten as

1/1(%’5) =
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(¢) Now show explictly by performing the integral that

hto\?
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where
[oe)

[Ax(t)]? = / da (a0 = (w0 + hkt/m)]

Problem 8: Fourier Series [10 points]|
Consider the expansion of a function f(z) on the interval [0,27] in terms of a Fourier series
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with the coefficients Ay, A,, and B, related to the function f(z) by

1 2m
A, = — dz f(z)cosnz,
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B, = — dr f(x)sinnz, n=0,1,2,.... (1)
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(a) Suppose, instead, that f(x) is to be represented by (or fitted to) a finite Fourier series (i.e.,
the sum is to be truncated at some n = N, as is required for any finite amount of CPU
time). A measure of the accuracy of such a finite series is given by the integrated square of
the deviation,

N
Ayn = /027Td$ lf(:p) - %Ao - Z (A, cosnx + B, sinnx)
n=1
Show that the requirement that Ay be minimized leads to the same choice of coefficients as
above (i.e., they do not depend on N!).
(b) Consider the representation of a triangular wave on the interval [—m, 7] (note the change in
the interval)
—x, —7m<x<0,

f(x):{% O<x<m.

Find a Fourier series representation for f(z).

Problem 9: Complex Variables [10 points]
Let 2 = = + iy be a complex number.

(a) Prove the triangle inequality for complex numbers z; and zs,
21| = [22] < |21 + 22| < |21 + |22].

Interpret this result in terms of two-dimensional vectors in the (z,y) plane.
(b) Show that
arg(zy - z9) = arg z1 + arg zs,
where ‘arg’ denotes the ‘argument’, or phase, of a complex number.

(c) Power series expansions for the elementary functions, such as sine, cosine, etc., can be defined
in the complex plane. For example, the usual power series expansions for sine and cosine hold,

eZZ + e—’lZ . eZZ _ e—ZZ
cosz = ———, sing = ————
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Using these, derive the following identities

sin(z + 1y) = sinx cosh y + i cos z sinh y,
cos(z +iy) = cosx coshy — isinxsinhy,
|sin z|? = sin?  + sinh?y,

| cos z|? = cos? z + sinh? .

Thus, we see that we can have |sin z|, | cos z| > 1 in the complex plane!

Problem 10: Taylor Expansions [10 points]

(a)

Consider a function of a single variable, f(x). Suppose we know the value of f(x) at discrete
grid points along the z-axis, © = 0, +h, £2h, etc, all separated by a “step size” h. A “forward
difference approximation” to the value of the first derivative, f/(x), at some point z is

fle+h) - f(z)
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whereas a “centered difference approximation” to f/(x) is

flx+h)— flz—h)
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fi(x) =

Which of these (if either) provides a better (i.e., more accurate) approximation to f’(z)?

Consider the same function f(x) as in part (a). Show that a “centered difference approxima-
tion” to the second derivative f”(z) is

fla+h) = 2f(x)+ fz—h)

1'(a) ~ >

Now consider a function in three-dimensional space, ®(x,y,z). Again, we will assume we
know the value of ® on a three-dimensional grid of discrete (x,y, z) points, all separated by
the same step size h in all three dimensions. Label these grid points with the indices (i, j, k).
Suppose @ satisfies the Laplace Equation, 62<I>(:17, y,z) = 0. Show that the Laplace Equation
can be “discretized” at any point (i, j, k) into the form

O(i+1, 5, k)+D(i—1, j, k)+D(i, j+1, k)+B (4, j—1, k)+D(i, j, k+1)+D(i, j, k—1)—6B (i, j, k) = 0.

Such discretization forms the basis of elementary “relaxation” methods for the numerical so-
lution of Laplace’s Equation. We will explore this technique later for the numerical solution
of boundary value problems.



