PHY 611 — Electromagnetic Theory I
Problem Set 2
Due: Wednesday, September 12 at 10:00 a.m. at the start of class

Problem 1 [5 points|: Coulomb’s Law

Consider a thin, uniformly charged rod with total charge @) and length 2d oriented along the z-axis,
with its center located at z = zp. Then consider a thin, uniformly charged ring of radius a and
total charge @' oriented in the xy-plane and centered on the z-axis. Calculate the Coulomb force
between the ring and the rod (via any method of your choosing), and show that your expression for
the force reduces to the expected form in the limit that zo/d > 1.

Problem 2 [5 points|: Electric Field

Calculate the electric field at a height i above the center of a finite square sheet (of size a x a) with
a uniform surface charge density of . Show that your result converges to the appropriate forms in
the limiting cases of a/h > 1 and a/h < 1.

Problem 3 [5 points]: Electrostatic Potential
Consider two infinitely long, parallel line charges with equal and opposite linear charge densities,
+, where A has units of charge/length. Show that the equipotentials are infinitely long cylinders.

Problem 4 [15 points]: Inverse Square Law and the Electrostatic Potential
Suppose that electromagnetism does not obey a true inverse square law', such that the electric field
of a point charge is E oc 7~ (97 where |6 < 1.
(a) Calculate V-E and V x E for r # 0. Find the electric potential for a point charge.
(b) Now suppose two concentric spherical conducting shells of radii @ and b, where a > b, are
joined by a thin conducting wire. Show that if charge @, resides on the outer shell of radius
a, then the charge on the inner shell of radius b is
Qaf
Qy~——=————[2bIn2a — (a+b)In(a + b) + (a — b) In(a — b)].
2(a —b)
Thus, a measurement of the ratio Q,/Q, would, in principle, provide for a stringent experi-
mental test of the accuracy of the inverse square law of electromagnetism.

Problem 5 [15 points|: Electrostatic Potential of a Uniform Dipole Layer
Calculate the potential ®(z) along the axis of a disk of radius R in two cases:

(a) If the disk is covered with a uniform charge density o.

(b) If the disk is covered with a uniform dipole layer of dipole moment density D = D2 per unit
area (assume D > 0). Begin by assuming that this uniform dipole layer is actually composed
of a system of two plates of equal and opposite charge densities +o located at z = +d/2, with
D = od finite in the limit d — 0. Show that in the limit of z > R > d your result gives the
correct limiting form for a point dipole. Then, find the value of ®(z = 07) — ®(2 = 07) in
the limit of d — 0. Interpret your result for ®(z = 07) — ®(2 = 07) in terms of the electric
field between the two plates.

n fact, there has been significant experimental work to test the validity of the inverse square laws of both
electromagnetism and gravity. The inverse square law for gravity has been shown to be valid down to length scales of
~ 60 pm, placing stringent constraints on the “sizes” of any extra dimensions, such as those arising in string theory.
See, for example, D. J. Kapner et al., Phys. Rev. Lett. 98, 021101 (2007).



Problem 6 [35 points|: Green’s Theorem in Two Dimensions

In this problem we will develop a two dimensional version of Green’s Theorem. In the next problem
set we will then use this two dimensional version of Green’s theorem to solve boundary value
problems.

(a)

We begin by considering a two dimensional domain D. We want to find the simplest func-
tion (the so-called “fundamental solution”) which satisfies V"20(Z, &) = 6(& — &), where the
Laplacian is with respect to #. Solve the equation V'2v(Z,7) = 8(Z — Z). Hint: You may
find the following useful. In two dimensions, given a vector field F defined over a domain D
with a closed boundary C', the two dimensional version of the divergence theorem is

// ﬁ-ﬁda:/ﬁ-ﬁda
D C

where 7 is normal to C. Note: Just as in three dimensions, your solution for v(Z, ') is
the “fundamental solution”, not the Green’s function in two dimensions (which is geometry
dependent). The two dimensional Green’s function will be G(Z, ") = v(Z, &)+ h(Z, Z’), where
h(Z, ") is constructed to simultaneously satisfy the Laplace equation inside of the domain and
the appropriate boundary condition (Dirichlet or Neumann).

Now let V = vﬁu, where u and v are now arbitrary scalar functions. Show that the two
dimensional version of Green’s first identity is
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Show that the two dimensional version of Green’s second identity is
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Now let v = In7 (does this look familiar?), where r = \/(z — 2/)2 + (y — ¢/)2 for & = (x,y) is
interior to the closed boundary C. Show that
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Just as in three dimensions, we can then identify w(Z) with ®(Z), and by “replacing” the
fundamental solution v with the Green’s function, we will thus have a two dimensional integral
equation for ®(Z).

Problem 7 [20 points]: Laplace Equation

Let S be the surface of a charged conductor with no nearby charges (see diagram below and the
corresponding coordinate system). Suppose we choose a coordinate system such that z =y =2 =0
is a point on S, and suppose further that the equation for S near the origin can be written as

where Rj 2 are constants. Calculate the value of —
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