PHY 611 — Electromagnetic Theory I
Problem Set 3
Due: Wednesday, September 26 at 10:00 a.m. at the start of class

Problem 1 [10 points]: “Self Energy” Contributions to the Electrostatic Energy

(a) Read the discussion on pp. 41-42 of Jackson on the contributions of the “self energy” terms
to the electrostatic energy density. First, derive Eq. (1.58) from Eq. (1.57). Second, show, as
stated after Eq. (1.58), that “...the dimensionless integral can easily be shown to have the
value 47, so that the interaction energy reduces to the expected value”.

(b) Consider two arbitrary charge distributions. Show that the sum of the “self energies” of the
two charge distributions is always greater than or equal to their interaction energy.

Problem 2 [5 points]: Capacitance of Parallel Cylinders
Neglecting end effects, calculate the capacitance per unit length, C’, of a system of two long parallel
cylinders of radius a whose axes are separated by a distance d > a.

Problem 3 [20 points]: Electrostatic Interaction Energy of Two Atoms

In this problem we will consider a simple model for the electrostatic interaction energy of two
atoms. (Nevermind how either of the configurations shown below could actually exist; the result is,
nevertheless, quite realistic!) We will not consider any electrostatic “self energies” in this problem.

(a) Calculate the electrostatic interaction energy W for the configuration shown below on the
left, consisting of two (negligibly thin) interpenetrating, spherical shells of radii @ and b. The
shells have uniformly distributed surface charges of ¢, and ¢y, and are separated by a distance
d, where a —b < d < a+b.

(b) As shown below on the right, a highly idealized electrostatic model of an atom consists of
a point charge +¢ (i.e., the “nucleus”) located at the center of a (negligibly thin) spherical
shell with a uniformly distributed charge of —g (i.e., the “electron shell”). Working within this
model, calculate the electrostatic interaction energy W of two identical atoms with radii a
separated by an internuclear separation d for three cases: d < a; a < d < 2a; and d > 2a. Make
a qualitative sketch of W as a function of d over this same range of d. If there is a minimum
in W(d), calculate the value of d at which this occurs in terms of the given parameters.

Problem 4 [20 points]: Method of Images
Consider two conducting spheres, of radii Ry and Ry, where in general we will assume R; # Rs.
Suppose the spheres are in contact at a single point. For example, if the sphere of radius R; is
centered at (0,0,0), the other sphere would be centered at (R + R2,0,0). Suppose that there are
charges, @1 and ()2, on the surfaces of the spheres such that they are at the same potential V) # 0
(enforced by the fact that they are in contact).



(a) Find recursion relations which would permit you to calculate 1 and Q3.

(b) Consider a case where R; = 1.0 m, and Rs = 0.0001 m. Write a computer code to calculate
the numerical value of the ratio Q2/Q1 for this case. Make sure you iterate your recursion to
a sufficiently high order so that your value for QQ2/@; is stable. You can feel free to use any
language you wish, but you will need to include a print-out of your code. Note: This will be
a nice llustration that the charges on the two spheres are not equal, even though they are at
the same potential!

Problem 5 [10 points|: Dirichlet Green Function for the Sphere

A conducting sphere of radius R is centered on the origin, and is held at a potential of V' # 0. Two
point charges, both of identical charge @@ > 0, are located at positions (0,0,a) and (0,0, —b), where
a > R and b > R (i.e., both charges are outside the sphere). Take ®(o0) = 0.

(a) Using the Green function technique, solve for the potential ®(z) along the z-axis in the region
external to the sphere (i.e., for » > R).

(b) Determine the value for the z-component of the electric field at = = R* (i.e., just above the
“North Pole” of the sphere).

Problem 6 [20 points|: Dirichlet Green Function in Two Dimensions for a Circle
Consider a circle of radius a. Use polar coordinates (o', ¢’). Suppose the boundary condition is such
that the potential on the circle is specified to be some function f(p' = a,¢’). Using your results
from the previous problem set for Green’s Theorem in two dimensions, show that at any point (p, @)
exterior to the circle, the potential is
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This is termed the “Poisson integral formula” for the exterior problem for a circle. Hint: You will
need to find the functional form of the Dirichlet Green function for a circle in two dimensions. Think
of how we came to find the functional form for the Dirichlet Green function for a sphere in three
dimensions.

Problem 7 [15 points]: Neumann Green Function in Two Dimensions

We now want to consider the Green function for the Neumann boundary condition in two dimensions
(i.e., solution for the potential when the normal derivative of the potential, 0®/9n’, is specified on
the boundary).

(a) In class, we showed that the simplest allowable boundary condition on a Neumann Green
function, G (Z, "), in three dimensions is
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where S denotes the total surface area of the surface bounding the volume V. Starting from
the two dimensional version of Green’s Theorem which you derived in the previous problem
set, show that the simplest allowable boundary condition on a Neumann Green function in
two dimensions is
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where C' is some constant. What is the physical interpretation of C'?
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(b)

()

If we were attempting to solve a two dimensional potential problem in the upper half plane
(i.e., the y > 0 portion of the xy-plane, with the boundary being the entire z-axis, from
r = —00 to & = +00), is it permissible to specify Gy (%, 7’)/dn’ = 0 on the boundary?

The functional form for Neumann Green functions in two dimensions can be constructed by
considering a “positive image charge” (whereas, as you recall, we constructed Dirichlet Green
functions in three dimensions by considering a “negative image charge”, which produced the
result that the Dirichlet Green function was zero everywhere on the surface). For the case of the
upper half plane discussed in part (b), write a functional form for the Neumann Green function,
and show that it satisfies the permissible condition on OGN (Z,2)/On’ on the boundary (i.e.,
the z-axis) and also V2Gn(Z,7) = (% — 7).



