Rutherford's Nuclear Model

- Before we discuss energy levels of atom \(\Rightarrow \) line spectra we need to have a clear picture of the atom.
 - J.J. Thompson's "plumb pudding" model
 - modes of vibration \(\Rightarrow \) atomic spectra?
 - like a vibrating drumhead. frequencies?
 - No!
 - Ernest Rutherford - nuclear model.
 - discovered \(\alpha \), \(\beta \), \(\gamma \) radiation from uranium
 \(\text{He}^2e^- \) also \(\alpha \) = photon e high energy
 \(\frac{q}{m} \) = half of the proton \(\Rightarrow \) showed \(\alpha = \text{He}^2 \)
 - brilliant idea to use \(\alpha \) as a probe
 "bread and butter" of nuclear physics.
 - size of atom: \(N_A = 6.02 \times 10^{23} \text{mol} \) \(\rho = 1 \text{g/cm}^3 \)
 \(A = 1 \text{g/mol} \)
 \(n = \frac{m}{M} \times \frac{1}{n} \times \frac{1}{A} \times \frac{1}{\text{cm}^3} \)
 \(l = 1.2 \times 10^{-10} \text{m} \)
- Example scattering "particle" experiment.
 \(\sigma \) = "cross-sectional area"
 - of a single target
 - not physical area, but area of interaction.
 - can't be observed directly
 - "Monte Carlo"
- counting statistics \(N \pm \sqrt{N} \)

- What do we know?
 - density \(n_t = \frac{\text{# of}}{l \times h \times t} = \frac{\#}{A} = \text{cm}^{-2} \)
 - beam current \(I_o = \# \text{ of } \times \frac{1}{\text{time}} = \text{A} \)
 - detector rate \(N = \# \text{ of } \times \frac{1}{\text{time}} \)
- total (absorption) cross-section
 \(\sigma = \frac{\text{detector rate}}{\text{luminosity}} = \frac{N}{I_o \times n_t} \text{ i.e. } \# \text{ of } \times \frac{1}{\text{hit}} = \frac{\# \text{ hit}}{\# \text{ thrown.} \}
Differential Cross section

- can we do better?
 - yes, we can measure the "force law" by scattering

- how do we measure dN?

- what shape of detector do you need?
 - can't "aim" at target, can't measure b directly.

- how does dN or $\frac{d\sigma}{d\Omega}$ relate to the force law?
 - look at trajectory to determine function $b(\theta)$.

- example - hard sphere scattering, radius a

 $2\phi + \Theta = 180^\circ$
 $b = a \sin \phi$

- Rutherford cross section

 $b = \frac{k_e q u Q}{m u v^2} \cot \Theta \frac{r^2}{2}$

 - verified by Geiger & Marsden