* Syllabus
 - Recommend texts
 - Class philosophy - faculty fellow - discussions
 - Develop map of QM together (not like E&M)
 - Provocative questions / guide discussion / fill gaps
 - I want relevance
 - Go over assignments

* Introduction
 - What is physics? Study of matter & interactions
 - Pillars: CM \(\rightarrow\) EM \(\rightarrow\) QM
 \(\rightarrow\) SM
 - What is classical physics & why?
 - Quotes: A. Michelson - Misattributed
 Lord Kelvin - Hint!
 (Wave theory of light & particle theory of matter)
 - Extensions of modern physics
 - 1st, 2nd quant. & how do we benefit?
 - SR, GR, etc.
 - Concepts - students list "essence of QM"
 - Postulates - Sudbery

- We just learned E&M: classical field theory
 - Now quantum field theory? NO!
 - Still classical fields \(\rightarrow\) quantum particles
 - You learned a lot of QM in EM - Schrödinger too!
 - Mathematics - almost identical!
 - Will fold it into the physics, not separate
 - New notation: \(\hat{a} |x\rangle = x |x\rangle\)
 \(\langle x'| \hat{a} |x\rangle = x \delta(x'-x)\)
• new tool: Mathematica

- what will we do?
 solve BVP's, eigenfunction expansions

- general outline