* Polar decomposition
 - any matrix M can be expressed as a rotation R and stretch S

 - example: shear transformation (see ppt)
 - the stretch $S = V W V^T$ is diagonal after further rotation
 - combine rotations: Singular Value decomposition (SVD)
 $M = R S = R V W W^T = U W V^T$ where $U^T U = I$, $V^T V = I$

* Diagonalization - notation of eigensystems

 $M \tilde{u}_i = \lambda_i \tilde{u}_i$
 $M U = U D$
 $U^T M U = D$

 $U^T U = I$, otherwise $U^T M U = D$

 Similarity transform - change of basis (rotation)

 $M = U D U^T = \sum_i \lambda_i \tilde{u}_i \tilde{u}_i^T$
 $I = U U^T = (\tilde{u}_i \tilde{u}_i^T)(\tilde{u}_j \tilde{u}_j^T) = \sum_i \tilde{u}_i \tilde{u}_i^T$

* Exponential - Normal Matrix analogy.

 - a square matrix G can be decomposed into symmetric T and antisymmetric A parts

 \[
 \frac{1}{2}(G + G^T) = T \\
 \frac{1}{2}(G - G^T) = A
 \]

 \[
 M = T + A
 \]
with respect to the adjoint
- take the exponential of each: \(T^t = T \) \(A^t = -A \)

a) \(T = VDV^t \)
\(S = e^T = Ve^D V^t \) because \(T^t = T \)

semi positive definite: (+) eigenvalues

b) \(R = e^A \)
\(R^t R = e^{-A} \cdot e^A = e^0 = I \)
unitary
\(\det R = \det e^A = e^{\text{Tr}A} = |e^{i\theta}| = 1 \)

c) \(M = e^G \leftarrow \text{generator} \) if \([T, A] = 0 \) (\(M \) is normal), then
\(= e^{T^t + S} = e^T \cdot e^S = S \cdot R \)

polar decomposition

- summary:
 \(\exp(G = T^t + A) \)
 \(\exp(\omega = \tau + i\psi) \) \(\omega = \psi \)
 \(= (M = S \cdot R) \) \(= (z = s \cdot r) \)
 \(s = e^\tau \) \(r = e^{i\phi} \)

a) Normal \(N = H + iK \)
\(H^t = H \) \(K^t = K \)
\(NN^t = N^t N \) \(HK = KH \) \(\rightarrow n \) complex eigenvalues.

b) (anti) Hermitian \(H^t = H \) \(A^t = (iK)^t = -eK = -A \)

\(\rightarrow \) (imaginary) real eigenvalues

c) Positive definite: positive eigenvalues

c) Unitary: \(U^t U = I \) unit eigenvalues. \(e^{i\theta} \)

- Proofs:
 if \(f(x) = \xi \alpha_i x^i \) and \(M = UDU^t \) then

\(f(M) = \xi \alpha_i M^i = \xi \alpha_i (UDU^t)^i \)
\(= U (\xi \alpha_i D^i) U^t \)
\(= U \cdot \text{diag}(f(x)) \cdot U^{-1} = U \left(\frac{f(x)}{x} \right) U^{-1} \)

\(e^{\text{Tr} M} = \exp(\text{Tr}(U^tDU)) = U \exp(\text{Tr}(\xi \alpha_i x^i)) U^{-1} \)
\[= U e^{\lambda_1 \hat{u}_1 + \lambda_2 \hat{u}_2 + \cdots} U^{-1} = U \det e^D U^{-1} = \det e^M \]

* Characterization of eigensystems:
- Note: \((SVD) \): \(M = U W V^T \) but can we say \(M = U D U^{-1} \)?

a) \(\text{End}(n) \): any \(n \times n \) matrix has \(n \) complex eigenvalues however degenerate \(\lambda_i \) may not have have same \(\# \) of eigenvectors
defective eigenvalues \(\approx \) dilation + nilpotent parts of matrix

Example: Shear: \(M = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 10 \\ 0 & 0 \end{pmatrix} + a \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \)
\[Z(1) = (0) \quad Zv_0 = 0v_0 \quad = I + a Z \]
\[Z(1) = (1) \quad Zv_1 = v_1 \quad \text{Jordan chain of generalized eigenvectors.} \]
Thus defective matrices still admit Jordan decompositions: \(\det M = U J U^{-1} \)

b) Normal matrices \(N^*N = NN^* \)
equivalently \(N = H + iK \) \(H^T = H \) \(K^T = K \) \([H,K] = 0 \)
\(H \) and \(K \) each have real eigenvalues
since \([H,K] = 0 \), there exist common eigenvectors
thus \(N \) has a set of "independent" complex eigenvalues \(N \hat{u}_i = \lambda_i \hat{u}_i \)
\(N^* \) has eigenvalues \(N^* \hat{u}_i = \lambda_i^* \hat{u}_i \)
The eigenvectors are orthogonal \(\hat{u}_i \cdot \hat{u}_j = 0 \) if \(\lambda_i \neq \lambda_j \)
so \(N \) has a unitary diagonalization \(N = U D U^T \) where \(U^T U = I \)

Normal matrix analogy lists the special cases:
Hermitian: real eigs
Positive def: positive eigs
Unitary: units $|\lambda_i|=1$

- Proof of simultaneous diagonalization:
 \[A^* = \lambda \bar{v} \quad AB = BA \]
 Then $A(B^*) = B A \bar{v} = \lambda (B \bar{v})$
 Thus $B \bar{v}$ is an eigenspace $\lambda \bar{v}$ $A \lambda$
 Diagonalize B on λ, $B \bar{v} = \mu \bar{v}$
 Then $A \bar{v} = \lambda \bar{v}$ also.

- Proof of conjugate eigenvalues & unitary eigenvectors:
 if \(N \bar{v}_i = \lambda_i \bar{v}_i \) and \(N^* \bar{v}_i = \mu_i \bar{v}_i \) then
 \[u_i^* N^* N u_j = (\lambda_i^* \lambda_j = \mu_i \lambda_j) \quad u_i^* u_j \]
 if $i = j$ then $\lambda_i^* = \lambda_j$
 if $\lambda_i \neq \lambda_j$ then $u_i^* u_j = 0$