Phy 306: Problem Set 2

(Due: February 5, 2008)

1) Prove the Euler formula, $e^{i x}=\cos x+i \sin x$. You may take x to be real, though the result holds for complex x as well.
2) Work the problems of Sec. 3.2 in Snieder.
3) Noting $\left(e^{i \theta}\right)^{n}=e^{i n \theta}$ for any n and the Euler formula prove de Moivre's theorem:

$$
\begin{equation*}
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta \tag{1}
\end{equation*}
$$

Use this with $n=4$ to show that

$$
\begin{equation*}
\cos 4 \theta=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1 \tag{2}
\end{equation*}
$$

and deduce that

$$
\begin{equation*}
\cos \frac{\pi}{8}=\left(\frac{2+\sqrt{2}}{4}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

4) Two complex numbers z and w are given by $z=3+4 i$ and $w=2-i$. What are the modulus $(|z|)$ and argument $(\arg z)$ of z ? Of w ? On an Argand diagram, plot the following: a) $z+w$, b) $z-w$, c) $w z$, d) w / z, e) $z^{*} w+w^{*} z$, f) w^{2}, and g) $(1+z+w)^{1 / 2}$.

Hint: for part g), if we write $z=r e^{i \theta}$, where r and θ are real, then you can use de Moivre's theorem to calculate its $n^{\text {th }}$ root.
5) Work problems a, g, and h in section 4.1 of Snieder.
6) Work problems d and e in section 4.3 of Snieder.

Extra Credit: Work problem d of section 4.2 of Snieder.

