Phy 306: Problem Set 3
 (Due: February 19, 2008)

1) Consider three vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}, which share a common origin. Show that the area of the parallelogram associated with two of the vectors, \mathbf{a} and \mathbf{b}, say, is given by $|\mathbf{a} \times \mathbf{b}|$. Show that the volume of the parallelepiped associated with the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c} is given by $|\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})|$. Show that $|\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})|$ is equivalent to $\operatorname{det}(\mathbf{a}, \mathbf{b}, \mathbf{c})$. Given this, how are $\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})$, $\mathbf{c} \cdot(\mathbf{b} \times \mathbf{a}), \mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}), \mathbf{a} \cdot(\mathbf{c} \times \mathbf{b}), \mathbf{b} \cdot(\mathbf{a} \times \mathbf{c})$, and $\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})$ all related?
2) Work problems e, f, and gin section 5.2 of Snieder.
3) Work all the problems in section 5.4 of Snieder.
4) Work problem h in section 5.6 of Snieder.
5) Verify that

$$
\begin{equation*}
\int_{C} \mathbf{F} \cdot d \mathbf{r}=0 \tag{1}
\end{equation*}
$$

where $\mathbf{F}=\nabla f$ and $f=x y z$, choosing for the curve C :
i) the square in the $x y$-plane with vertices at $(0,0),(1,0),(1,1)$, and $(0,1)$.
ii) the triangle in the $y z$-plane with vertices at $(0,0),(1,0)$, and $(0,1)$.
iii) the circle of unit radius centered at the origin and lying in the $x z$-plane.
6) a) Consider a vector function \mathbf{F} in cylindrical coordinates such that

$$
\begin{equation*}
\mathbf{F}(\rho, \varphi, z)=\frac{1}{\rho} \hat{\varphi} . \tag{2}
\end{equation*}
$$

Consider a unit circle in the $x y$ plane and integrate

$$
\begin{equation*}
\int_{C} \mathbf{F} \cdot d \mathbf{r} \tag{3}
\end{equation*}
$$

for two different choices of C . In specific, consider a curve C_{R} which follows our unit circle from $x=z=0, y=-1$ to $x=z=0, y=+1$ on the right-hand side of the circle, as well as a curve C_{L} which follows our unit circle from $x=z=0, y=-1$ to $x=z=0, y=+1$ on the left-hand side of the circle. Why does the fact that the two paths give different results imply that there is no scalar function f such that $\mathbf{F}=\nabla f$?
b) A force \mathbf{F} is conservative if its line integral from points A to B, that is,

$$
\begin{equation*}
\int_{C^{\prime}} \mathbf{F} \cdot d \mathbf{r} \tag{4}
\end{equation*}
$$

is independent of any path C^{\prime} from A to B. Could either the function \mathbf{F} of problem $\# 5$ or that of problem $\# 6$ a) represent a conservative force? Why or why not? If \mathbf{F} is a conservative force, is there always a scalar function f for which $\mathbf{F}=\nabla f$? Why or why not?

