Phy 306: Problem Set 4
 (Due: February 28, 2008)

1) Consider the scalar functions $\psi(\mathbf{r})$ and $\phi(\mathbf{r})$. Write $\nabla \times(\nabla \psi), \nabla \times(\nabla \phi)$, and $(\nabla \psi) \times(\nabla \phi)$ in the simplest form possible. Explain your results using geometrical arguments.
2) Work problem d in section 6.2 of Snieder. What is $\int \mathbf{v} \cdot d \mathbf{S}$ for a surface enclosing both \mathbf{r}_{+} and \mathbf{r}_{-}? Why?
3) Work problem g in section 6.4 of Snieder.
4) Work the problems of section 6.5 of Snieder.
5) Calculate the divergence of the function

$$
\begin{equation*}
\mathbf{F}(x, y, z)=\hat{\mathbf{x}} f(x)+\hat{\mathbf{y}} f(y)+\hat{\mathbf{z}} f(-2 z) \tag{1}
\end{equation*}
$$

and evaluate it explicitly for $x=y=c, z=-c / 2$, where c is a constant. Calculate the divergence of the function

$$
\begin{equation*}
\mathbf{G}(x, y, z)=\hat{\mathbf{x}} f(y, z)+\hat{\mathbf{y}} g(x, z)+\hat{\mathbf{z}} h(x, y) . \tag{2}
\end{equation*}
$$

Calculate the curl of $F(x, y, z)$, the curl of $G(x, y, z)$, and the curl of the function

$$
\begin{equation*}
\mathbf{H}(x, y, z)=\hat{\mathbf{x}} y z+\hat{\mathbf{y}} x z+\hat{\mathbf{z}} x y . \tag{3}
\end{equation*}
$$

6) Show that $\nabla \cdot(\nabla \times \vec{F})=0$. Give a geometrical explanation of this result.
