Kittel ($7^{\text {th }}$ Edition). Chapter 1. Problem 3.
© Kwok-Wai Ng, 2005.

Top layer A

Lower layer B

Figure 1.

Figure 3.

Figure 2.
The top two layers of ficp are shown in figure 1. Center of the spheres locating at sites A,

B, C, and X are shown in figure 2. For a perfect hcp, the spheres are in contact with each other, hence the tetrahedron in figure 2 is regular with each side equal to the lattice parameter a, which is two times the radius of the sphere. Figure 3 show the base of a tetrahedron.

Look at triangle XYZ in figure 2,
$(X Z)^{2}=(X Y)^{2}+(Y Z)^{2}$
$X Y=\frac{c}{2}$
$\mathrm{XZ}=a \cos 30^{\circ}=\frac{a \sqrt{3}}{2}$
From figure 3,
$\mathrm{YZ}=\frac{a}{2} \tan 30^{\circ}=\frac{a}{2 \sqrt{3}}$
Substitute (2), (3), and (4) into (1) :

$$
\begin{aligned}
\left(\frac{a \sqrt{3}}{2}\right)^{2}=\left(\frac{c}{2}\right)^{2}+\left(\frac{a}{2 \sqrt{3}}\right)^{2} & \Rightarrow \frac{3 a^{2}}{4}=\frac{c^{2}}{4}+\frac{a^{2}}{12} \\
& \Rightarrow \frac{c^{2}}{4}=\frac{3 a^{2}}{4}-\frac{a^{2}}{12} \\
& \Rightarrow 3 c^{2}=9 a^{2}-a^{2} \\
& \Rightarrow 3 c^{2}=8 a^{2} \\
& \Rightarrow c^{2}=\frac{8}{3} a^{2} \\
& \Rightarrow c=\sqrt{\frac{8}{3}} a
\end{aligned}
$$

