Kittel ($7^{\text {th }}$ Edition). Chapter 2. Problem 1.
© Kwok-Wai Ng, 2005.

(a)

Let the planes intercepts the base vectors $\overrightarrow{\mathrm{a}}_{1}, \overrightarrow{\mathrm{a}}_{2}$, and $\overrightarrow{\mathrm{a}}_{3}$ at $\mathrm{p} \overrightarrow{\mathrm{a}}_{1}, \mathrm{q} \overrightarrow{\mathrm{a}}_{2}$, and $\overrightarrow{\mathrm{r}}_{3}$.
If we have to multply the reciprocals of p, q, and r with a common factor s to form the Miller indices, i.e.

$$
\mathrm{s}\left(\frac{1}{\mathrm{p}} \frac{1}{\mathrm{r}} \frac{1}{\mathrm{~s}}\right)=(\mathrm{h} \mathrm{kl}) \Rightarrow \mathrm{p}=\frac{\mathrm{s}}{\mathrm{~h}}, \mathrm{q}=\frac{\mathrm{s}}{\mathrm{k}}, \mathrm{r}=\frac{\mathrm{s}}{\mathrm{l}}
$$

Note: 1 . There is always a lattice plane passing through the origin
2. s used to multiply $1 / p, 1 / q$, and $1 / r$ is an integer
3. The reason why $s \neq 1$ is because the p, q, r chosen is not the plane closest to the origin. $s=\ldots .,-3,-2,-1,0,1,2,3, \ldots \ldots$. correspond to consecutive lattice planes (all have the same Miller indices hkl). $\mathrm{s}=0$ is the plane passing through the origin, $s= \pm 1$ are the nearest planes at either side of the $s=0$ plane and so on.

In the derivation below we can simply choose $s=1$, but we keep it there until the end. The plane is generared by vecrors $\left(p \vec{a}_{1}-q \vec{a}_{2}\right)$ and $\left(p \vec{a}_{1}-r \vec{a}_{3}\right)$, hence we need only to show these two vectors are perpendicular to $\overrightarrow{\mathrm{G}}$:

$$
\begin{aligned}
& \overrightarrow{\mathrm{G}} \cdot\left(\mathrm{p} \overrightarrow{\mathrm{a}}_{1}-\mathrm{q} \overrightarrow{\mathrm{a}}_{2}\right)=\left(\mathrm{h} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k} \overrightarrow{\mathrm{~b}}_{2}+l \overrightarrow{\mathrm{~b}}_{3}\right) \cdot\left(\mathrm{p} \overrightarrow{\mathrm{a}}_{1}-q \overrightarrow{\mathrm{a}}_{2}\right) \\
& =\left(\mathrm{hb} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k} \overrightarrow{\mathrm{~b}}_{2}\right) \cdot\left(\frac{\mathrm{s}}{\mathrm{~h}} \overrightarrow{\mathrm{a}}_{1}-\frac{\mathrm{s}}{\mathrm{k}} \overrightarrow{\mathrm{a}}_{2}\right) \quad\left(\overrightarrow{\mathrm{b}}_{3} \perp \overrightarrow{\mathrm{a}}_{1} \text { and } \overrightarrow{\mathrm{a}}_{2}\right) \\
& =\mathrm{h} \overrightarrow{\mathrm{~b}}_{1} \cdot \frac{\mathrm{~s}}{\mathrm{~h}} \overrightarrow{\mathrm{a}}_{1}-\mathrm{kb} \overrightarrow{\mathrm{~b}}_{2} \cdot \frac{\mathrm{~s}}{\mathrm{k}} \overrightarrow{\mathrm{a}}_{2} \quad\left(\overrightarrow{\mathrm{~b}}_{1} \perp \overrightarrow{\mathrm{a}}_{2} \text { and } \overrightarrow{\mathrm{b}}_{2} \perp \overrightarrow{\mathrm{a}}_{1}\right) \\
& =\frac{2 \pi \mathrm{~s}}{\mathrm{~V}}\left[\left(\stackrel{\rightharpoonup}{\mathrm{a}}_{2} \times \overrightarrow{\mathrm{a}}_{3}\right) \cdot \overrightarrow{\mathrm{a}}_{1}-\left(\overrightarrow{\mathrm{a}}_{3} \times \overrightarrow{\mathrm{a}}_{1}\right) \cdot \overrightarrow{\mathrm{a}}_{2}\right] \\
& =\frac{2 \pi \mathrm{~s}}{\mathrm{~V}}\left[\left(\stackrel{\rightharpoonup}{\mathrm{a}}_{3} \times \stackrel{\rightharpoonup}{\mathrm{a}}_{1}\right) \cdot \stackrel{\rightharpoonup}{\mathrm{a}}_{2}-\left(\stackrel{\rightharpoonup}{\mathrm{a}}_{3} \times \stackrel{\rightharpoonup}{\mathrm{a}}_{1}\right) \cdot \stackrel{\rightharpoonup}{\mathrm{a}}_{2}\right]=0 \\
& \stackrel{\rightharpoonup}{G} \cdot\left(p \vec{a}_{1}-r \overrightarrow{\mathrm{a}}_{3}\right)=\left(\mathrm{h} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{k} \overrightarrow{\mathrm{~b}}_{2}+\mathrm{l} \overrightarrow{\mathrm{~b}}_{3}\right) \cdot\left(\mathrm{p} \overrightarrow{\mathrm{a}}_{1}-\mathrm{r} \stackrel{\rightharpoonup}{a}_{3}\right) \\
& =\left(\mathrm{h} \overrightarrow{\mathrm{~b}}_{1}+\mathrm{l} \overrightarrow{\mathrm{~b}}_{3}\right) \cdot\left(\frac{\mathrm{s}}{\mathrm{~h}} \overrightarrow{\mathrm{a}}_{1}-\frac{\mathrm{s}}{\mathrm{l}} \overrightarrow{\mathrm{a}}_{3}\right) \quad\left(\overrightarrow{\mathrm{b}}_{2} \perp \overrightarrow{\mathrm{a}}_{1} \text { and } \overrightarrow{\mathrm{a}}_{3}\right) \\
& =\mathrm{h} \overrightarrow{\mathrm{~b}}_{1} \cdot \frac{\mathrm{~s}}{\mathrm{~h}} \overrightarrow{\mathrm{a}}_{1}-\mathrm{l} \overrightarrow{\mathrm{~b}}_{3} \cdot \frac{\mathrm{~s}}{\mathrm{l}} \overrightarrow{\mathrm{a}}_{3} \quad\left(\overrightarrow{\mathrm{~b}}_{1} \perp \overrightarrow{\mathrm{a}}_{3} \text { and } \overrightarrow{\mathrm{b}}_{3} \perp \overrightarrow{\mathrm{a}}_{1}\right) \\
& =\frac{2 \pi \mathrm{~s}}{\mathrm{~V}}\left[\left(\overrightarrow{\mathrm{a}}_{2} \times \overrightarrow{\mathrm{a}}_{3}\right) \cdot \overrightarrow{\mathrm{a}}_{1}-\left(\overrightarrow{\mathrm{a}}_{1} \times \overrightarrow{\mathrm{a}}_{2}\right) \cdot \overrightarrow{\mathrm{a}}_{3}\right] \\
& =\frac{2 \pi \mathrm{~s}}{\mathrm{~V}}\left[\left(\overrightarrow{\mathrm{a}}_{1} \times \overrightarrow{\mathrm{a}}_{2}\right) \cdot \overrightarrow{\mathrm{a}}_{3}-\left(\stackrel{\rightharpoonup}{\mathrm{a}}_{1} \times \overrightarrow{\mathrm{a}}_{2}\right) \cdot \overrightarrow{\mathrm{a}}_{3}\right]=0
\end{aligned}
$$

(b)

Suppose we have to multiply \vec{G} with a factor t so that the tip $t \vec{G}$ is on the plane:
($\left.\mathrm{p} \overrightarrow{\mathrm{a}}_{1}-\mathrm{t} \overrightarrow{\mathrm{G}}\right) \cdot \overrightarrow{\mathrm{G}}=0 \quad$ (we have already proved that $\overrightarrow{\mathrm{G}} \perp$ plane)
$\Rightarrow \quad \mathrm{p} \overrightarrow{\mathrm{a}}_{1} \cdot \overrightarrow{\mathrm{G}}=\mathrm{tG}^{2}$
$\Rightarrow \quad \mathrm{p} \overrightarrow{\mathrm{a}}_{1} \cdot \mathrm{~h} \overrightarrow{\mathrm{~b}}_{1}=\mathrm{tG}{ }^{2}$
$\Rightarrow \quad \mathrm{s} \overrightarrow{\mathrm{a}}_{1} \cdot\left[\frac{2 \pi \overrightarrow{\mathrm{a}}_{2} \times \overrightarrow{\mathrm{a}}_{2}}{\overrightarrow{\mathrm{a}}_{1} \cdot\left(\overrightarrow{\mathrm{a}}_{2} \times \overrightarrow{\mathrm{a}}_{3}\right)}\right]=\mathrm{tG}^{2}$
$\Rightarrow \quad \mathrm{t}=\frac{2 \pi \mathrm{~s}}{\mathrm{G}^{2}}$
$\therefore|\mathrm{t} \overrightarrow{\mathrm{G}}|=\frac{2 \pi \mathrm{~s}}{\mathrm{G}^{2}} \mathrm{G}=\frac{2 \pi \mathrm{~s}}{\mathrm{G}}$
Dis tan ce between planes $=$ Distance between the $(s=1)$ plane and the origin

$$
=\frac{2 \pi}{G}
$$

Note: 1 . There is always a lattice plane passing through the origin
2. s used to multiply p, q, and r is an integer
3. The reason why $\mathrm{s} \neq 1$ is because the $\mathrm{p}, \mathrm{q}, \mathrm{r}$ chosen is not the plane closest to the origin. $s=\ldots .,-3,-2,-1,0,1,2,3, \ldots \ldots$. correspond to consecutive lattice planes (all have the same Miller indices hkl). $\mathrm{s}=0$ is the plane passing through the origin, $s= \pm 1$ are the nearest planes at either side of the $s=0$ plane and so on.
(c)

Reciprocal lattice of a simple cubic of lattica parameter a is again a simple cubic of lattice parameter $\frac{2 \pi}{\mathrm{a}} . \therefore \overrightarrow{\mathrm{b}}_{1}, \overrightarrow{\mathrm{~b}}_{2}$, and $\overrightarrow{\mathrm{b}}_{3}$ are perpendicular to each other and each has a magnitude of $\frac{2 \pi}{\mathrm{a}}$.

$$
\begin{aligned}
& \therefore G=\sqrt{\left(\frac{2 \pi h}{a}\right)^{2}+\left(\frac{2 \pi k}{a}\right)^{2}+\left(\frac{2 \pi l}{a}\right)^{2}}=\frac{2 \pi}{a} \sqrt{h^{2}+k^{2}+l^{2}} \\
& d(\mathrm{hkl})=\frac{2 \pi}{G}=\frac{a}{\sqrt{\mathrm{~h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}}} \quad \text { or } \mathrm{d}^{2}=\frac{\mathrm{a}^{2}}{\mathrm{~h}^{2}+\mathrm{k}^{2}+\mathrm{l}^{2}}
\end{aligned}
$$

