
Chapter 10.  Superconductivity 
 
Two basic properties of superconductivity 
 
1. Zero resistivity 
 Below a certain temperature, the critical temperature Tc (property of the 
superconductor), resistivity of a superconductor will become exactly zero.  The first 
superconductor was mercury, discovered by Onnes in 1911. 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Perfect diagmagnetism 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A superconductor expels magnetic field completely when it is in superconducting 
phase (T<Tc).  This phenomenon was discovered by Meissner (and Ochsenfeld) in 1933, 
so it is called the Meisner effect.  
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3. Missing any one of these two properties will make the superconducting phase 
thermodynamically unstable.  Hence it needs both properties to prove a material is a 
superconductor. 
 
4. In measuring resistance of a superconductor, if contact resistance >> normal 
resistance of the superconductor, strict four points measurement is needed: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For I to be constant, R>>Sample resistance + contact resistance. 
 
Two fluid model 
 
1.   Assume there are two kind of carriers – normal and superconducting.  In here, let 
the normal carriers form component 1, and the superconducting carriers form component 
2. 
 
2. Superconducting carriers are in a condensed state, they are at the lowest energy 
state and they carry no entropy. 
 
3. As a result, there is no scattering for the superconducting carriers and there is no 
resistance for them – they cause the phenomenon of superconductivity.   
 
4. When T>Tc, all carriers are normal. When T=0, all carriers will be 
superconducting.   When 0<T< Tc, ω = ns/N will be superconducting and (1-ω) will be 
normal.  ω can be considered as an order parameter.  We want now to determine the 
value of ω for the equilibrium between the two components.  
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5.  

 
To fit the experimental data, Gorter and Casimir replaced (1-ω) in above 

expression by (1-ω)1/2: 

 
 

π
ω−⎟

⎠
⎞

⎜
⎝
⎛ γ−ω=

ω+⎟
⎠
⎞

⎜
⎝
⎛ γ−ω=

ω+ω=
∴

π
−=

π
−===

γ=

γ−=γ−=−=

==

π
=⇒

π
=

∫∫

8
)0(H

T
2
1 )-(1             

)0,0(fT
2
1 )-(1             

)0,T(f)0,T(f )-(1  )0,T(f
:is phase ctingsupercondu  theofenergy  Free 

8
)0(H

  
8

)0(H
)0,0(f   )0,0(f constant  )0,T(f

:effectMeissner  of because and entropy, no hascomponent  ctingsupercondu The
T  eunit volumper heat  specific where

T
2
1TdTdTC)0,0(f)0,T(f

0)0,0(f assume and 0H For
:component neutral  theofenergy  Free

BdH
4
1-SdT-du  df     BH

4
1-TS-ufenergy   free Define

2
c2

2
2

21s

2
c

2
c

122

2
en11

1

( )
4

c

2
c

2
c

c

2

2
c

2

2
c

2

2
c

2

2
c2s

2
c2

s

T
T1    )0(HT2   

0  ,TTAt 
)0(H

T21            

)0(H
T2

4
)0(H

T
2
1

-1            

0
8

)0(H
T

2
1

-12
1   0  

f
m,equilibriu At

8
)0(H

T
2
1 )-(1 )0,T(f

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=ω⇒=πγ∴

=ω=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ πγ
−=ω⇒

πγ
=

π

⎟
⎠
⎞

⎜
⎝
⎛ γ

=ω⇒

=
π

−⎟
⎠
⎞

⎜
⎝
⎛ γ

ω
⇒=

ω∂
∂

π
ω−⎟

⎠
⎞

⎜
⎝
⎛ γ−ω=



Thermodynamics of superconductor  
 
1. Superconducting state is an ordered state, so its free energy and entropy are lower 
than the free energy and entropy of the normal state.   
 
2. Applied magnetic field can destroy conductivity.  A superconducting state will 
become normal when H > Hc(T). 
 
 
 
 
 
 
 
 
 
 
 
 
 Define free energy f=U-TS-HB/4π 
 
3. Along the blue line in the above figure, 

At the phase boundary,  
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3. Along the red line (T-axis) in above figure: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 The two curves have the same slope and join together at T=Tc,  hence the 
transition is second order. 
 
4. From two fluid model: 
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Electrodynamics of superconductors – London equation 
 
1. Semiclassical equation of motion: 
 
 
 
 
 
 
 
 
2. Faraday’s Law: 

3. Introduce penetration depth λL: 
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4. Combine London’s second equation with Maxwell equation: 
 

 
 
5. London Gauge 
 Canonical momentum: 

 For a ground state system,  
          
 
 
 
 
 
 
 
 
 
6. Original London’s equation can also be derived from this result: 
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7. Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Ginzburg-Landau (GL) equation (1950) 
 
1. Ginzburg-Landau equation is a general phenomenological theory for phase 
transition by introducing an order parameter Ψ to describe the more ordered state.  In the 
case of superconductor, the superconducting carrier density we used in the two fluid 
model can be used as the order parameter: 
    ns= |Ψ|2 
 
2. The GL equation is mostly valid when T~Tc.  Although it is valid only in a short 
temperature range, but it is extremely powerful when the superconductor becomes 
inhomogeneous when Ψ(x) is a function of position.  Examples when superconductor 
becomes inhomogeneous:  (i) at surface of type I superconductor in an external field, 
when the field penetrate the superconductor according to London’s equations.  (ii)  when 
a type II  superconductor is in its mixed or vortex state.  
 
3. GL (time independent) equation looks like Schroedinger equation: 
 
 
 
 In general, α<0 and β>0.  Ψ(x) now plays the role of a wave function and it can 
be complex. 
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 The supercurrent is given by Ψ(x): 
 
 
 
4. Experimentally it was determined that e*=2e and m*=2m. 
 
5. Example 1 (proximity effect) 
 
 
 
 
 
 
 
 
 
 With no magnetic field (A=0), GL equation becomes: 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Now introduce coherence length ξL: 
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6. GL equation introduces a new length scale: coherence length ξL.  It is a measure 
on how fast Ψ drops to 0 at the boundary between normal metal and superconductor. ξL 
depends on temperature, because a depends on temperature: 
 
 
 
 
7. α(T) varies linearly with T: 
                       α(T) ~ T - Tc  
  
  
 
 Note that ξL diverges (to infinity) as T →Tc . 
 
8. Now we have two length scales:  penetration depth λ and coherence length ξL. 
 
 
 
 
 
 
 
 
 
 
 The relative magnitude of these two length scales will affect how the normal 
region is formed as the magnetic field penetrates the superconductor.  For example, if λ 
>> ξL, one can expect the field can penetrate deep inside the superconductor with the 
formation of small normal region (~ξL). 
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9. Define GL parameter κ: 
                                    
 
 
 According to Abrikosov theory (1957), κ define two types of superconductors: 
 
 
 
 
 
 
  
 κ determines how the magnetic energy is distributed between surface and volume.  
For type I superconductor, most energy is stored in the surface.  If λ is large, it is more 
efficient to store energy in “tubes” of ξL in diameter.  These tubes are called vortices, 
occur only in type II superconductors. 
 
10. Type-I superconductor 
 
 
 
 
 
 
 
 
 
 
 
 London’s equations are followed when it is in the superconducting state (H< Hc).  
Most elemental superconductors are type-I superconductors. 
 
 Type-II superconductors. 
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12. Vortex formation in type II superconductor:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Top view: 
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13. If we write the order parameter as 

Flux quanta 
Φs 

Superconductor 

Vortex 
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Φs is the flux quanta of a vortex.  Note that Φs = Φ0 /2. 
 
BCS Theory (1957) 
 
1. Sincee*=2e and m*=2m. ∴electrons form pairs.  Pairing allows fermion to form 
boson (after pairing) and Bose-Eisntein condensation to occur. 
 
2. BCS theory is the only successful microscopic theory so far that explains how the 
electron pair is formed.  Yet there are many exotic superconductors with strange behavior 
that cannot be fully explained yet. 
 
3. Isotopic effect: the Tc of a superconductor depends on the nucleus mass (of the 
same element). 
 Frolich theory  ⇒   M1/2Tc = constant   
 This is not necessary precisely correct.  In general, we have  
                                   MαTc = constant 
with α to be determined experimentally. 
 
 The importance of isotopic effect is that the phenomenon of superconductivity is 
related to the atoms in the superconductors, not just the free electrons alone. 
 
4. The exchange of virtual phonons produces a small attraction between the 
electrons.  The free electron Fermi sphere is unstable against this small attraction, and a 
new ground state is defined. 
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5.  .  From this, BCS postulated that the electron pairs are mediated by the vibration 
of atoms (i.e. phonons) – electrons from pairs by exchange of virtual phonons.  Virtual 
phonons are phonons with wavelength λ >> distance between the electrons forming the 
pair – this simply means distortion of lattice.  The idea is that as an electron moves 
around in the lattice, its interaction with the ions will cause a small distortion in the 
lattice and this distortion will attract another electron into the region. 
 
 
 
 
 
 
 
 
 
 
 
Only electrons within a shell thickness         can form pairs.  ωD is the Debye temperature. 
 
 
 
 
 
 
 
 
 
 
 
 
5. BCS approximations 
 (i) For the lowest energy state, electrons form pair so that their total 
momentum and total spin are zero, i.e. Only consider pairing between electrons with (k, 
↑) and (-k,↓). 
 (ii) Assume isotropic potential, because of phonon mediated interaction.   

 This isotropic potential gives rise to “s-wave” superconductors.  Meaning of “s-
wave” superconductors: 
 Pairing of two spins. 
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s=0 ⇒ symmetric wavefunction. 
Angular momentum =s, d, g, i, …….  
 
s=1 ⇒ antisymmetric wavefunction. 
Angular momentum =p, f, h,  …….  
 
Most simple superconductors, as required by BCS theory, are s-wave superconductor.  
The spatial wave function is isotropic.  Pairing of superfluid He3 is p-wave (note that He-
4 does not form pair because He-4 is a boson by itself). 
 
7. By forming pairx, the total energy (2EF) is lowered is lowered by an amount of 
2∆.  2∆ is known as the energy gap of the superconductor. ∆(T) can also be considered as 
the order parameter, related to Ψ.   
 
8. ∆(0) depends on ωD and V:   

 N(E=0) is the density of states at the Fermi energy.  
 
9. ∆(0) determines Tc: 

 Some superconductors may have a significant larger value.  For example, for Ph,     

 These are known as strong coupling superconductors. This does not mean that 
these superconductors are not BCS like or phonon mediated. 
 
10. Pippard coherence length ξ0. 
 In superconductor, there is another coherence length, called the Pippard coherence 
length ξ0.  Only electron within 2∆ on the Fermi surface can contribute to 
superconductivity, even at T=0K.   
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This corresponds to an uncertainty in time of  

In this time, the electron will travel a distance of  

ξ0 can be more precisely derived in BCS theory as:  

ξ0 is a constant independent of T, and  
                                               ξ0  ~ ξ(T)  (GL coherence length) when T<<Tc.  
 
10. ∆(T) depends on temperature.  Assuming an isotropic ∆, it is given by the 
equation: 
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As T → Tc, we know that  
 
 
 
But  

Therefore we expect  
 
 
 
More accurately, according to BCS: 
 
 
 
 
11. Thermal excitations.  At T>0, thermal excitations occur.  Electrons in a 
superconductor can be considered as a Fermi liquid.  For this reason, thermal excitation 
can be described as vreation of quasiparticle.  A quasiparticle at state k ≡ no pair between  
(k, ↑) and (-k,↓).  Quasiparticles have lifetime.  They behave pretty much like an electron 
at state k (Landau Fermi liquid theory).  They follow Fermi-Dirac distribution: 

 
12. BCS theory gives the density of states of the quasiparticle as: 
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 Energy spectrum of quasiparticle: 

 
 
 Hole like quaiparticle:    Electron like quasiparticle: 
 
 
 
 
 
 
 
 
 
 



 
Josephson Tunneling 
 
1. Josephson tunneling is often called a weak link between two superconductors.  
Types of weaklinks: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Josephson junction 

Bridge 

Point contact 

Soldering junction 



2. dc Josephson effect:  
 Weak links can conduct supercurrent at zero voltage.  The critical current of the 
weak link is much smaller than the bulk critical current.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Time dependent Schroedinger equation: 

With coupling by the weak link K: 

If there is a potential difference V across the junction, when a pair “tunnel“ through the 
junction, there is an energy change of 2eV.  We can phenomenologically write H1 as eV 
and H2 as –eV at the junction: 

Since |Ψ|2 =n, we can write 
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Equating real and imaginary parts: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In other words, 
  
 
 
 
It is more common to use Josephson current than current density.  I=JA, and we can write 
similarly, 
                                      I = Ic sin ∆θ 
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3.       dc-Josephson effect:  
          When a non-zero voltage is applied across the Josephson junction, the phase 
difference across the two sides will oscillate and this gives rise to an oscillating 
supercurrent. 
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Ic 

Weak link is superconducting and 
there is a constant phase difference 
across the two sides (dc-Josephson 
effect). 

I = Ic sin ∆θ 

ac-Josephson effect occurs when 
V≠0. <I>=0 for ac-Josephson 
effect, and this is not observable in 
this dc-characteristic. 

ac-Josephson super current  ⇔  oscillating phase difference across the junction 
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e2/ωh

ac-Josephson is observed as microwave radiation from the junction (caused by the 
oscillating supercurrent) as a constant voltage is applied across the junction. 
 
reverse, if microwave of frequency ω is shined on a Josephson junction, voltate steps will 
occur and the step width equals to  .   
 
4. Small junction and large junction 
 
 When a strong enough magnetic field is applied, it will penetrate the 
superconductor at the junction area first: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
The junction is small if the cross sectional dimensions Lx, Lx < λJ.  The junction is large 
if the cross sectional dimensions Lx, Lx >> λJ.  Below argument applied only to small 
junctions.   
 
5. Quantum interference 
 
Current density (and phase θ) across the junction will not be uniform if a magnetic field 
is applied parallel to the junction: 
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Similarly, for SC2, along the path A’B’C’D’, 
 
 
 
 
Subtracting these two equations, 
 
 
 
 
 
 
 
 
A1∞+ A2∞ can be calculated from the combined loop: 
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This gives rise to the Fraunhofer pattern for Josephson junction: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. SQUID 
 From above we know that measurement of Ic allows accurate determination of Φ 
(like using interference to determine small distance).  The device using this method to 
measure Φ is known as Superconducting QUantum Interference Device (SQUID).  There 
are two types of SQUID:  ac-SQUID (or rf-SQUID) and dc-SQUID.    
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