Chapter 11. Magnetism
Diamagnetism

1. Magnetisation M of diamagnetic material is opposite to the total magnetic field B
(and applied field H), hence the magnetic susceptibility y is negative. Magnetic
susceptibility is defined as y= 0M/0B.

2. Diamagnetism is a characteristic of atoms with closed shell. Electrons will
response to external field by Faraday’s Law. Currents will arrange themselves to oppose
the change of increasing field, and hence M is in the opposite direction of H.

3. Classical theory of diagmagnetism:
Consider an electron in a circular orbit of radius r and angular frequency o.

Centripetal force F = mRw,”
If a magnetic field 6B is turned on, and assume it affect  only.
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Classically, the B field will make the charge q revolve faster if q is positive. If the
particle is an electron, it will revolve slower.

Current formed by the loop = | = Charge x revolution / second
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Magnetic moment of the atom=p :12 LA, (A = Area of the orbital loop)
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R is the radius of the electron loops.
<R?>=<x*>+<y’>
If r =radius of the three dimensional electron shell,
<rP>=<xX’>+<y’*>+<2’>

If <Xx? >=<y?>=<z°>
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If N = Number of atoms per unit volume, and M = magnetization of the sample,
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Paramagnetism

1.

2.

v is the gyromagnetic ratio, g is the g-factor, and pg is the Bohr magneton.

When atoms possess their own magnetic moment, paramagnetism will occur.

Intrinsic magnetic moment if related to the total angular momentum (including
orbital and spin) of the electrons in an atom.
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For the spin of a free electron| g=2| For the orbital momentum of an electron,

For a free atom, g is given by the Lande g-factor:
fH=-gugJ
In LS coupling,
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4, Original quantum number: L,L, S, S;.
Quantum number after LS coupling: L, S, J, J,.
Atomic notation:

25+1Lj

L=S,P,D,F,GH,.. forl=001,2,3,4,.... sespectively.

5. Quantum number j for the total angular momentum is determined by Hund’s rule:
Let there be x electrons in the outer shell. Each shell can hold y electrons.
s shell can hold y=2 electrons.
p shell can hold y=6 electrons.
d shell can hold y=10 electrons.
f shell can hold y=14 electrons.
Draw y/2 boxes. Example, for d-shell:
(10/2=5 boxes)

Under each boxes, label L, (according to the L of the shell) from maximum to
minimum. Example, L=2 for d shell:

L;: +2 +1 0 -1 -2

Hund’s rule #1 (how to fill up the boxes):

Always fill up boxes one by one from left to right. Do not double occupy the
boxes until the shell is half full. Start to double occupy the boxes after the shell is half
full, start from left to right again.

Hund’s rule #2 (how to calculate L, S, and J):
S=XS,, L=X2L,, J=|L-S| if shell is less than half full or half full, and J=L+S if shell
is more than hall full or half full.

Esample 1:

7 electrons in d-shell

TR I

L;: +2 +1 0 -1 -2

L=3L, = +2+1+0-1-2+2+1 =3 (or F)
S=5S, = 1/2x5-1/2x2=3/2 (25+1=4)
J=L+S =9/2

Ground level of the atom: *Fgy;

6. There are 2j+1 sub-levels with J, = -J, -J+1,...,-1,0,1,...,J-1, J. If we define the
energy for J, =0 as 0, then the energy of each of this state is given by

E,, =-fi-B=gpyJsB



The relative population in level J, can be calculated as:
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Define Brillouin function B;(x):

B,(x)= 2J+1 coth 2JJrlx—icothix
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p = effective Bohr magnetron number

(Qug)?I0+1) for small field B
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Susceptibility of paramagnetism follows Curie Law:
X A

C is the Curie constant,
C — ﬂ pZ,"LB2
V 3k,
7. J, Sand J can be estimated from Hund’s rule. After J is estimated, g can be

calculated with the Lande equation and the p (effective Bohr magnetron number) is
known. The estimated value can be compared with experimental value. Notes:

Q) Hund’s rule works well for most rare earth (4f electrons), and the calculated p is
very close to the measured value. In some cases like Er** (Europium) and Sm®*
(Samarium), energy between the j-multiplets is too small and will cause problem in the
2" order perturbation.

(i) Hund’s rule does not work fine for transition metals (d electrons). In case of rare
earth, the 4f electrons are deep inside the ion and well covered by the 5s and 5p shells.
This is not the case for the transition metals. The d-electrons are actually extended
further out and exposed to the fields from the neighbors (crystal field). This crystal field
will affect the LS coupling and modify Hund’s rule in calculating J.

(iii)  Crystal field will not couple with S, because spin hjas no real space variables in it.
However, the crystal field potential will couple with L. It will split the original
degenerate l-orbtals >> uB.



Example of crystal field splitting (p-orbitals):
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(iv)  Under the crystal field slitting, L, is not a good quantum number any more. On
average over time, <L,> =0. Therefore, for transition metal, p (with 2 electrons in shell)
should be calculated as g[s(s+1)]"2 = 2[s(s+1)]"? instead of g[j(j+1)]?, since L does not

contribute to magnetic properties.

(v) For splitting of all degenerate orbitals, the crystal field cannot be symmetric,
Very often, if the crystal is high symmetric (e.g. cubic), the ions will displaced
themselves to produce a non-symmetric crystal potential to quench the angular
momentum. This is called Jahn-Teller effect,

Pauli paramagnetism

1. Electron has spin, so free electrons demonstrate paramagnetic property, This is
known as Pauli paramagnetism.

2. The effect of Pauli paramagnetism is very small, becayse electrons inside the
Fermi sphere cannot flip their spins easily when nearly all states are occupied. Only
electrons near the Fermi surface can contribute to Pauli paramagnetism. According to

Curie Law:
X :g for small field

Percentage of electrons that have the freedom to flip spin =T/Tk.
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sy formetal=—-—=—
T F TF

Pauli paramagnetism is independent of temperature.



3. More quantitative treatment:

When there is no field:

.

Among of T and { electrons
are the same.
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When an external field B is applied, say, in the T direction, it will lower the
energy of the T electrons by uB and raise the energy of the | electrons by uB
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This treatment has ignored the spatial effect of magnetic field. In fact, the magnetic field
can modify the electron wave function and produces diamagnetism. This diamagnetism
is about 1/3 of the above estimated paramagnetism in magnitude:
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Long range magnetic ordering
1. Long range magnetic ordering is due to exchange field B from neighbors. In

other words, we assume an exchange field between neighbors that gives rise to long
range ordering.

2. Magnetic ordered states has higher symmetry and it occurs only at low
temperatures when T < T,. T is the critical temperature of the magnetic transition.

3. Three common types of magnetic ordering:
Ferromagnetic Antiferromagnetic Ferrimagnetic
ordering ordering ordering

4. It is clear from above schematic drawings that ferromagnetism and

ferrimagnetism will give rise to spontaneous magnetisation then ordering occurs at T<T..
The antiferromagnetism will not produce any magneisation because of the two opposing
spin components. When T>T, there will be no ordering and the material has to be
paramagnetic (i.e. the ions should have their own spin at the beginning).

Example: T, for iron (Fe) is 1043K. Iron is actually ferromagnetic possessing
ordering and spontaneous magnetisation at room temperature. It is not a magnet because
of domain formation.
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Total magnetic moment =0




Ferromagnetism

1. The exchange field Be is approximated by the average magnetization field M
within the sample:

Be=A M
where X is a temperature independent constant. This is known as the mean field
approximation. Note that now the exchange field will become stronger as temperature is
lowered, because that is what M does according to Curie Law.

2. When T>T. — Curie Weiss Law and relationship between A and T:
If B, = applied field and yp= paramagnetic susceptibility.

M =y,(B, +B¢)
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More accurate renormalization group theoury gives y o W
2 2 2 2
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3. When T>T.- calculation of spontaneous magnetisation:

Be is so strong that B, can be ignored. i.e., B= B, + Bg ~ Be. For simplicity, Iwt
us consider j=1/2 (2 levels), and g=2.
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This curve y ~ m/t will have no solution with y=m (except at m=0) when
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This is consistent with the result we derived from the side T>T..

4, Spontaneous magnetization neat Te:
As T — T, mis small. Expansion of tanh x for small x:
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More accurate renormalization theoy gives
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Note that the behavior of M is similar to that of A in the case of syuperconductivity at T ~
Te.



5. Low temperature excitations — magnons:

Consider N spins coupled to their neighbors:

N —_ —_
U=-2J z S-S, (Heisenberg interaction)
i=1
U is minimum when all spins are parallel (ground state) at T=0:

Ground state
U=-2JNS

If we consider the j-th spin in antiparallel to the others,
j-2 R N R . R R
U=-2J {z S-S+ z S;Si1-S;4°S;—S; -SH}
i=1 i=j+1
=-2JS?[(N-2)-2]
= -2NJS® +8J5°
=U, + 8JS°
This will raise the system energy by an amount of 8JS?. This excitation energy

will be smaller if we allow this antiparallel spin to be shared by all members of the
system — formation of magnons.

Consider the j-th spin in the system:
U,=-21[S,,-5+5,5

j+l

=235, [S,, +5,.
Sj is related to its magnetic moment as
B =-0usS;
_ 2) = =
Uj= -1 {_E'[SH +Sj+1]}
The termin {} can be identified as tne exchange field acting on the jth - spin as
_ 2] = ~
Bej = - Ol '[Sj—l +Sj+1

Torque acting on the j- th spin = x BEJ.
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Assume S; is not off aligned with the other spins so that S*, S’ << Sj*. We can ignor
second order terms like S;*S;’ and approximate Si* as S. The equations of the j-th spin
can the be written as:

2JS
—(S )——[28y Siy” +S,.7)]
2JS x X
_(S )’) = __[2S ( j-1 +Sj+1 )]
~(S*)=0
OIt( i)
Trial solution :
S.x _ uei(jka—mt)
S y |(Jka wt)

u, v are constants, amplltude that measure the maximum deviation of the spin. Substitute
these trial solutions into the differential equations:
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= —iou =%v[2 —e T _g]
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Similarly, from the equation for %(Sjy) :

—iov :-%u[l—cos ka]

u, v have non — trivial solution only if{
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= hiw =4Js(1-coska)
If this condition is satisfy, solving for uand v :
-ioU=wv } .
) = v=-iu
-iov=-ou

. S{and S;” are 900 out of phase with equal amplitude. i.e. The spin is precessing
circularly about the z-axis:



* Top view:
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“Normal mode” of spin dynamics

ho

Spin dynamics is “quantized” into magnons, each of energy . Any spin configuration
can be expressed as combination of these magnons.
Dispersion relation of magnons:

ho = 4Js(1—coska)
=8Jssin’® 1 ka

For small k,

ho ~8Js- (L ka)? = 2Jsk?a?
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6. Thermal excitations of magnons:
We can derive the thermal properties of magnons from the dispersion relationship.
Similar to the case of phonons, magnons are bosons:
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exp(ho, /kgT) -1

Each magnon has a spin of s. 1 magnon corresponds to 1spin flip out of Ns.
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Ferrimagnetic order
1. Example:
Magnetite
/ FeO
Fez04 \
Fe,O3

At low temperatures:

N(0) is much smaller than that by
l considering Fe3z0O,4 as ferromagnetic.

In genetal:
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vivly

Ferrimagnetic
ordering

Exchange field on site A:
B,= uM, - AiM,
—— —
Due tosublattice A Due to sublattice B
Exchange field on site B:
Bp= —-AM, + vM,
Due to sublattice A Due to sublattice B
For ferromagnetic order to occur, A >> p, v:
.~ By= -AM,
H_J
Due to sublattice B
Bo= —-AM,
R —
Due to sublattice A

Let the Curie constants of sublattice A and B be Ca and Cg respectively. Mean field
theory, when T>T¢:

Mo=S( B, +B,) =28, -AM,)
= T
Applied field
My=( B, +B.)="2(8,-iM,)
T . T
Applied field
At T =T_, ignoring B, for non - trivial solution of M ,and M, :
T AC
c A :O
ACg T,
=T, - 2C,Cy =
=T, =4,C,C;y
I\A/lA:C:_A(Ba AMyg) MA"';L.?AMB:C?ABa
=
Vo =S2@,-aM,)| | Mg+iZem, =28,
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Antiferromangetism
1 Ferromagnetic ordering Antiferromagnetic ordering
Exchange field: J>0 Exchange field: J<0
Y A ! x A I
i » i .
T. T Tn T
Critical temperature: Critical temperature:

Curie temperature T, Neel temperature Ty



Antiferromagnetism is a special case of ferrimagnetism with Co=Ceg, i.e.

T, > Ty =AJC?=AC
Z:(CA +Cg)T-2T,/C,Cy _ 2CT-2T,VC’
2

T:-T. T2 T,
oo 2C
T+T,
Experimentally,
2C . : : :
¥ = T 0 (@is not exactly T,, because of next - nearest neighbor interaction)
When T<Ty:

Case 1. If B, L axis of spin
LetM:|MA|:|MB|

Ma
// :Ba
/20
Mg
U :-%(BA.MA +By-Mg)-B,-(M, +M,) (B, and By are exchange fields)
:_%(_ﬂ'MB'MA-_ﬂ'MA'MB)_Ba '(MA"'MB)

:ﬂ“MB'MA_Ba '(MA"'MB)
= AM? cos (180° — 2¢) — 2MB, - cos (90° — ¢)
=- AM? cos 2¢ — 2MB, sin ¢
z-/zMz[l-%(2¢)2]—2MBa¢

To minimize U:

d—zzo = 4iM%$-2MB, =0



U=-=(B, M, +B;-M;)-B,- (M, +M;,) (B, and B are exchange fields)

N
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= AM? cos (180° — 2¢) — 2MB, - cos (90° — ¢)

=- AM? cos 2¢ — 2MB, sin ¢

z-;LMZ[1-%(2¢)2]—2MBa¢

To minimize U :

W o 4)M*$-2MB, =0
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B, 2AM B, A T,

Case 2. If B, // axis of spin

There isno changeinU. .. ,(0)=0
Ma Mg
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4, Antiferromagnetic magnons:

_imueitke-ot _ 2Js [Zei(jka—wt) _ gilli-nka-ot] _ ei[(j+l)ka—mt]]
/]

= —iou =%v[2—e‘ika —e™]
= —iou :%v[l—coska]

Similarly, from the equation for %(Sjy) :

—iov = -%u[l— coska]

u, v have non — trivial solution only if{
4Js

io ——[1-coska
h [ ] _

=0
—%[1— coska] [0}

2
= o= {%{l— cos ka]}

= hiw=4Js(1-coska)
If this condition is satisfy, solving for uand v :
-ioU =0V } )
) = v=-iu
-iovV=-ou
From case of ferromagnetism:
Now, if lattice A corresponds to even indices (2j) and lattice B to odd indices
(2j+1), then Sy should have opposite sign with S,j..* and Szj+1*.  Rewriting the equation
for ferromagnetism:

d X 2J 4 z z -
a(sj ):;[Sjy(sj_l +5,,)-5, (S, +S..") (feromagnetic)
rewritten

d X 2\] z z z H H
E(SZJ ):?[Szjy(—szjf1 —S,i1 )-S5 (Sy” +S,,.7)1  (antiferromagnetic)

d xy 2JS 2
= E(SZJ )= 7[_2821y _SZj—ly _Szj+1y)] (S, =9)

and similarly,
d 2JS X x X
a(szjy)=_7[282j 'Szj—l _Szj+1 )]
LetS" =S* +iS’

d . 21JS N N N
a(szj ):T[Zszj +Szj—1 +Szj+1 )]



Corresponding equations for lattice B:

d

dt

d
)=~

LetS* =S* +iSY
d ;

g G ) =

Trial solution :

S, =

]

2JS

2iJS
h

x\ 2JS
_(Szm ) = 7[282141)/ _Sij _82j+2y]

Above defferential equations become

—ika

-iou =%[2u + ve

= ou =-%S[u + vcoska]

—ika

-iou :-%[2v+ ue

= oV =[v+ucoska]
For non - trivial solution :

4]S 4)S
—_— 7COS ka

435 4

———coska
h

+ve'™]

+ue™]

=0 = (co+

(SZjZ =95)

7[282141)( - Szjx - Szj+zx]

[2S,5," +S," +S,;., )]

i[(2))ka-wt] + o i[(2j+)ka-ot]
u and S, =u

43S 43S\ (4Js ?
- + coska| =0
7 7 7

438’ {4JS JZ
—— | —| ——coska
) )

2
%S (1-coska)’

2
%S sin? ka
—Sj|sin ka |



- » k > K
-mt/a ‘\{};\ m/a n/a
Eock forsmallk. Eock? forsmallk.
Antiferromagnetism Ferromagnetism
Domains
1. Spin in a material with long range magnetic ordering (ferromagnetic,

antiferromagnetic etc.) form domains.

2. Reason for domain formation:

]

Higher energy Lower energy

3. For small field: domain size will change in accordance to the direction of the
magnetic field. Change in domain size can be reversible or irreversible.



Ba

— 1

4. For large field: domain magnetization will re-align with the external field.

M 4
saturation- - -

Irreversible boundary displacement

I Reversible boundary displacement

»

6. Irreversib
hystersis:

» Da

le boundary displacement and magnetization rotation are the causes of



Saturation - - - - - - - - - oo e

Bs

Remanence B,

» H

\

Coercivity H. (field needed to
reduce B back to 0)




