Chapter 11. Magnetism

Diamagnetism

1. Magnetisation \mathbf{M} of diamagnetic material is opposite to the total magnetic field \mathbf{B} (and applied field \mathbf{H}), hence the magnetic susceptibility χ is negative. Magnetic susceptibility is defined as $\chi=\partial \mathrm{M} / \partial \mathrm{B}$.
2. Diamagnetism is a characteristic of atoms with closed shell. Electrons will response to external field by Faraday's Law. Currents will arrange themselves to oppose the change of increasing field, and hence \mathbf{M} is in the opposite direction of \mathbf{H}.
3. Classical theory of diagmagnetism:

Consider an electron in a circular orbit of radius r and angular frequency ω.

Centripetal force $\mathrm{F}=\mathrm{mR} \omega_{0}{ }^{2}$
If a magnetic field $\delta \mathrm{B}$ is turned on, and assume it affect ω only.

$$
\begin{aligned}
m R \omega_{0}^{2}+q \frac{v}{c} \delta B=\frac{m v^{2}}{R} & \Rightarrow m R \omega_{0}^{2}+q \frac{R \omega}{c} \delta B=m R \omega^{2} \\
& \Rightarrow m R \omega_{0}^{2}+q \frac{R\left(\omega_{0}+\delta \omega\right)}{c} \delta B=m R\left(\omega_{0}+\delta \omega\right)^{2} \\
& \Rightarrow m R \omega_{0}^{2}+q \frac{R\left(\omega_{0}+\delta \omega\right)}{c} \delta B=m R\left(\omega_{0}^{2}+2 \omega_{0} \delta \omega+\delta \omega^{2}\right)
\end{aligned}
$$

Taking only first order term,

$$
\therefore \mathrm{q} \frac{\mathrm{R} \omega_{0}}{\mathrm{c}} \delta \mathrm{~B}=2 \mathrm{mR} \omega_{0} \delta \omega \Rightarrow \delta \omega=\frac{\mathrm{q} \delta \mathrm{~B}}{2 \mathrm{mc}}
$$

Classically, the B field will make the charge q revolve faster if q is positive. If the particle is an electron, it will revolve slower.

Current formed by the loop $=\mathrm{I}=$ Charge \times revolution $/$ second
$\therefore \mathrm{I}=\mathrm{q} \cdot \mathrm{f}=\frac{\mathrm{q} \omega}{2 \pi}$
$\delta \mathrm{I}=\frac{\mathrm{q}}{2 \pi} \delta \omega$
\therefore For an electron in an atom, $\delta \mathrm{I}=\frac{\mathrm{e}}{2 \pi} \cdot \frac{-\mathrm{e} \delta \mathrm{B}}{2 \mathrm{mc}}$

$$
=-\frac{\mathrm{e}^{2} \delta \mathrm{~B}}{4 \pi \mathrm{mc}} \text { (the negative sign gives rise to diamagnetism) }
$$

Magnetic moment of the atom $=\mu=\frac{1}{\mathrm{C}} \sum_{\mathrm{i}=1}^{\mathrm{Z}} \mathrm{I}_{\mathrm{i}} \mathrm{A}_{\mathrm{i}} \quad$ (A = Area of the orbital loop)

$$
\begin{aligned}
& =\frac{\pi}{\mathrm{C}} \sum_{\mathrm{i}=1}^{\mathrm{Z}} \mathrm{I}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}}{ }^{2} \\
& =\frac{\mathrm{Z} \pi}{\mathrm{C}} \mathrm{I}\left\langle\mathrm{R}^{2}\right\rangle
\end{aligned}
$$

\therefore By appling a magnetic field $\delta \mathrm{B}$,

$$
\left.\left.\delta \mu=\frac{\mathrm{Z} \pi}{\mathrm{c}} \delta \mathrm{I}<\mathrm{R}^{2}>=\frac{\mathrm{Z} \pi}{\mathrm{c}}\left(-\frac{\mathrm{e}^{2} \delta \mathrm{~B}}{4 \pi \mathrm{mc}}\right)<\mathrm{R}^{2}\right\rangle=-\frac{\mathrm{Ze}^{2} \delta \mathrm{~B}}{4 \mathrm{mc}^{2}}<\mathrm{R}^{2}\right\rangle
$$

R is the radius of the electron loops.

$$
\left\langle\mathrm{R}^{2}\right\rangle=\left\langle\mathrm{x}^{2}\right\rangle+\left\langle\mathrm{y}^{2}\right\rangle
$$

If $r=$ radius of the three dimensional electron shell,

$$
\left\langle\mathrm{r}^{2}\right\rangle=\left\langle\mathrm{x}^{2}\right\rangle+\left\langle\mathrm{y}^{2}\right\rangle+\left\langle\mathrm{z}^{2}\right\rangle
$$

If $\left\langle\mathrm{x}^{2}\right\rangle=\left\langle\mathrm{y}^{2}\right\rangle=\left\langle\mathrm{z}^{2}\right\rangle$
$\therefore\left\langle\mathrm{R}^{2}\right\rangle=\frac{2}{3}\left\langle\mathrm{r}^{2}\right\rangle$
$\left.\delta \mu=\frac{2}{3} \cdot\left(-\frac{\mathrm{Ze}^{2} \delta \mathrm{~B}}{4 \mathrm{mc}^{2}}<\mathrm{r}^{2}\right\rangle\right)=-\frac{\mathrm{Ze}^{2} \delta \mathrm{~B}}{6 \mathrm{mc}^{2}}\left\langle\mathrm{r}^{2}\right\rangle$
If $\mathrm{N}=$ Number of atoms per unit volume, and $\mathrm{M}=$ magnetization of the sample,

$$
\begin{aligned}
\therefore & \delta \mathrm{M}=\mathrm{N} \delta \mu=-\frac{\mathrm{NZe}^{2} \delta \mathrm{~B}}{6 \mathrm{mc}^{2}}<\mathrm{r}^{2}> \\
& \chi=\frac{\delta \mathrm{M}}{\delta \mathrm{~B}}=-\frac{\mathrm{NZe}^{2}}{6 \mathrm{mc}^{2}}<\mathrm{r}^{2}>\quad \text { - Langevin equation for diamagnetism }
\end{aligned}
$$

Paramagnetism

1. When atoms possess their own magnetic moment, paramagnetism will occur.
2. Intrinsic magnetic moment if related to the total angular momentum (including orbital and spin) of the electrons in an atom.

$$
\vec{\mu}=\gamma \hbar \overrightarrow{\mathrm{J}}=-g \mu_{\mathrm{B}} \overrightarrow{\mathrm{~J}}
$$

γ is the gyromagnetic ratio, g is the g-factor, and μ_{B} is the Bohr magneton.

$$
\mu_{\mathrm{B}}=\frac{\mathrm{e} \hbar}{2 \mathrm{mc}}
$$

3. For the spin of a free electron, $g=2$. For the orbital momentum of an electron, $g=1$.

For a free atom, g is given by the Lande g -factor:
$\vec{\mu}=-g \mu_{\mathrm{B}} \overrightarrow{\mathrm{J}}$
In LS coupling,

$$
\begin{aligned}
& \vec{\mu}=\sum_{i}-g_{L} \mu_{B} \stackrel{\rightharpoonup}{L}_{i}+\sum_{i}-g_{s} \mu_{B} \stackrel{S}{S}_{i} \\
& g_{L}=1 \text { and } g_{s}=2 \\
\therefore & \vec{\mu}=-\mu_{B}\left(\sum_{i} \stackrel{\rightharpoonup}{L}_{i}+2 \sum_{i} \vec{S}_{i}\right)
\end{aligned}
$$

On the other hand, $\vec{\mu}=-g \mu_{B} \vec{J}$

$$
\begin{aligned}
& \therefore-\mu_{\mathrm{B}}\left(\sum_{\mathrm{i}} \overrightarrow{\mathrm{~L}}_{\mathrm{i}}+2 \sum_{\mathrm{i}} \overrightarrow{\mathrm{~S}}_{\mathrm{i}}\right)=-\mathrm{g} \mu_{\mathrm{B}} \overrightarrow{\mathrm{~J}} \\
& \Rightarrow \overrightarrow{\mathrm{~L}}+2 \overrightarrow{\mathrm{~S}}=\mathrm{g} \overrightarrow{\mathrm{~J}} \quad\left(\overrightarrow{\mathrm{~L}}=\sum_{\mathrm{i}} \overrightarrow{\mathrm{~L}}_{\mathrm{i}}, \overrightarrow{\mathrm{~S}}=\sum_{\mathrm{i}} \overrightarrow{\mathrm{~S}}_{\mathrm{i}}\right) \\
& \Rightarrow \overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{~J}}+2 \overrightarrow{\mathrm{~S}} \cdot \overrightarrow{\mathrm{~J}}=\mathrm{g} \overrightarrow{\mathrm{~J}} \cdot \overrightarrow{\mathrm{~J}} \\
& \overrightarrow{\mathrm{~S}}^{2}=(\overrightarrow{\mathrm{J}}-\overrightarrow{\mathrm{L}})^{2}=\overrightarrow{\mathrm{J}}^{2}+\overrightarrow{\mathrm{L}}^{2}-2 \overrightarrow{\mathrm{~L}} \cdot \overrightarrow{\mathrm{~J}} \Rightarrow \overrightarrow{\mathrm{~L}} \cdot \overrightarrow{\mathrm{~J}}=\frac{1}{2}\left(\overrightarrow{\mathrm{~J}}^{2}+\overrightarrow{\mathrm{L}}^{2}-\overrightarrow{\mathrm{S}}^{2}\right)
\end{aligned}
$$

Similarly,

$$
\overrightarrow{\mathrm{L}}^{2}=(\overrightarrow{\mathrm{J}}-\overrightarrow{\mathrm{S}})^{2}=\overrightarrow{\mathrm{J}}^{2}+\overrightarrow{\mathrm{S}}^{2}-2 \overrightarrow{\mathrm{~S}} \cdot \overrightarrow{\mathrm{~J}} \Rightarrow \overrightarrow{\mathrm{~S}} \cdot \overrightarrow{\mathrm{~J}}=\frac{1}{2}\left(\overrightarrow{\mathrm{~J}}^{2}+\overrightarrow{\mathrm{S}}^{2}-\overrightarrow{\mathrm{L}}^{2}\right)
$$

Substitute these into the previous equation,

$$
\begin{aligned}
& \therefore \frac{1}{2}\left(\stackrel{\mathrm{~J}}{ }^{2}+\overrightarrow{\mathrm{L}}^{2}-\overrightarrow{\mathrm{S}}^{2}\right)+2 \cdot \frac{1}{2}\left(\overrightarrow{\mathrm{~J}}^{2}+\overrightarrow{\mathrm{S}}^{2}-\overrightarrow{\mathrm{L}}^{2}\right)=\mathrm{g} \overrightarrow{\mathrm{~J}} \cdot \overrightarrow{\mathrm{~J}} \\
& \Rightarrow \frac{3}{2} \stackrel{\mathrm{~J}}{ }^{2}+\frac{1}{2} \overrightarrow{\mathrm{~S}}^{2}-\frac{1}{2} \overrightarrow{\mathrm{~L}}^{2}=\mathrm{g} \overrightarrow{\mathrm{~J}}^{2} \\
& \Rightarrow \frac{3}{2} \mathrm{j}(\mathrm{j}+1)+\frac{1}{2} \mathrm{~s}(\mathrm{~s}+1)-\frac{1}{2} \ell(\ell+1)=\mathrm{gj}(\mathrm{j}+1) \\
& \Rightarrow \mathrm{g}=\frac{3 \mathrm{j}(\mathrm{j}+1)+\mathrm{s}(\mathrm{~s}+1)-\ell(\ell+1)}{2 \mathrm{j}(\mathrm{j}+1)}=1+\frac{\mathrm{j}(\mathrm{j}+1)+\mathrm{s}(\mathrm{~s}+1)-\ell(\ell+1)}{2 \mathrm{j}(\mathrm{j}+1)}
\end{aligned}
$$

4. Original quantum number: $\mathrm{L}, \mathrm{L}_{z}, \mathrm{~S}, \mathrm{~S}_{z}$.

Quantum number after LS coupling: L, S, J, J
Atomic notation:
${ }^{2 S+1} \mathrm{~L}_{\mathrm{j}}$
$L=S, P, D, F, G, H, \ldots$ for $l=0,1,2,3,4, \ldots$ sespectively.
5. Quantum number j for the total angular momentum is determined by Hund's rule:

Let there be x electrons in the outer shell. Each shell can hold y electrons.
s shell can hold $\mathrm{y}=2$ electrons.
p shell can hold $\mathrm{y}=6$ electrons.
d shell can hold $\mathrm{y}=10$ electrons.
f shell can hold $\mathrm{y}=14$ electrons.
Draw y/2 boxes. Example, for d-shell:

(10/2=5 boxes)
Under each boxes, label L_{z} (according to the L of the shell) from maximum to minimum. Example, $\mathrm{L}=2$ for d shell:

Hund's rule \#1 (how to fill up the boxes):
Always fill up boxes one by one from left to right. Do not double occupy the boxes until the shell is half full. Start to double occupy the boxes after the shell is half full, start from left to right again.

Hund's rule \#2 (how to calculate L, S, and J):
$\mathrm{S}=\Sigma \mathrm{S}_{\mathrm{Z}}, \mathrm{L}=\Sigma \mathrm{L}_{\mathrm{z}}, \mathrm{J}=|\mathrm{L}-\mathrm{S}|$ if shell is less than half full or half full, and $\mathrm{J}=\mathrm{L}+\mathrm{S}$ if shell is more than hall full or half full.

Esample 1:

7 electrons in d-shell

$\mathrm{L}=\Sigma \mathrm{L}_{\mathrm{z}}=+2+1+0-1-2+2+1=3$ (or F)
$\mathrm{S}=\Sigma \mathrm{S}_{\mathrm{z}}=1 / 2 \times 5-1 / 2 \times 2=3 / 2 \quad(2 \mathrm{~S}+1=4)$
$\mathrm{J}=\mathrm{L}+\mathrm{S}=9 / 2$
Ground level of the atom: ${ }^{4} \mathrm{~F}_{9 / 2}$
6. There are $2 \mathrm{j}+1$ sub-levels with $\mathrm{J}_{\mathrm{z}}=-\mathrm{J},-\mathrm{J}+1, \ldots,-1,0,1, \ldots, \mathrm{~J}-1$, J . If we define the energy for $J_{Z}=0$ as 0 , then the energy of each of this state is given by

$$
E_{J_{z}}=-\vec{\mu} \cdot \stackrel{\rightharpoonup}{\mathrm{B}}=\mathrm{g} \mu_{\mathrm{B}} \mathrm{~J}_{\mathrm{B}} \mathrm{~B}
$$

The relative population in level J_{z} can be calculated as:

$$
\begin{aligned}
\frac{N_{J_{z}}}{N} & =\frac{e^{-E_{J_{Z}} / k_{B} T}}{\sum_{J_{z}=-J}^{J} e^{-E_{J_{z}} / k_{B} T}}=\frac{e^{-g \mu_{B} J_{z} B / k_{B} T}}{\sum_{J_{z}=-J}^{J} e^{-g \mu_{B} J_{z} B / k_{B} T}} \\
<m> & =\sum_{J_{z}=-J}^{J}-g \mu_{B} J_{z} \frac{N_{J_{z}}}{N} \\
& =\frac{\sum_{J_{z}=-J}^{J}-g \mu_{B} J_{z} e^{-g \mu_{B} J_{Z} B / k_{B} T}}{\sum_{J_{z}=-J}^{J} e^{-g \mu_{B} J_{z} B / k_{B} T}}
\end{aligned}
$$

Let $\alpha=-g \mu_{B}, \beta=g \mu_{B} B / k_{B} T$

$$
\begin{aligned}
&<\mathrm{m}>= \frac{\alpha \sum_{\mathrm{J}_{\mathrm{z}}=-\mathrm{J}}^{\mathrm{J}} \mathrm{~J}_{\mathrm{z}} e^{-\beta \mathrm{J}_{z}}}{\sum_{\mathrm{J}_{\mathrm{z}}=-\mathrm{J}}^{\mathrm{J}} \mathrm{e}^{-\beta \mathrm{J}_{\mathrm{z}}}} \\
&=-\alpha \frac{\partial}{\partial \beta} \sum_{\mathrm{J}_{\mathrm{z}}=-\mathrm{J}}^{\mathrm{J}} \mathrm{e}^{-\beta \mathrm{J}_{z}} \\
& \sum_{\mathrm{J}_{\mathrm{z}}=-\mathrm{J}}^{J} e^{-\beta \mathrm{J}_{z}}
\end{aligned}
$$

$$
=-\alpha \frac{\partial}{\partial \beta} \ell n\left[\frac{\mathrm{e}^{\beta\left(\mathrm{J}+\frac{1}{2}\right)}-\mathrm{e}^{-\beta\left(\mathrm{J}+\frac{1}{2}\right)}}{\mathrm{e}^{\frac{\beta}{2}}-\mathrm{e}^{-\frac{\beta}{2}}}\right]
$$

$$
\left(x+a x+a^{2} x+\cdots+a^{n-1} x=x \cdot \frac{1-a^{n}}{1-a}, x=e^{\beta J}, a=e^{-\beta}, n=2 J+1\right)
$$

$$
=-\alpha \frac{\partial}{\partial \beta}\left[\ln \left(\mathrm{e}^{\beta\left(\mathrm{J}+\frac{1}{2}\right)}-\mathrm{e}^{-\beta\left(\mathrm{J}+\frac{1}{2}\right)}\right)-\ln \left(\mathrm{e}^{\frac{\beta}{2}}-\mathrm{e}^{-\frac{\beta}{2}}\right)\right]
$$

$$
=-\alpha \frac{\partial}{\partial \beta}\left[\left(J+\frac{1}{2}\right)\left(\frac{e^{\beta\left(J+\frac{1}{2}\right)}+e^{-\beta\left(J+\frac{1}{2}\right)}}{e^{\beta\left(J+\frac{1}{2}\right)}-e^{-\beta\left(J+\frac{1}{2}\right)}}\right)-\frac{1}{2}\left(\frac{e^{\frac{\beta}{2}}+e^{-\frac{\beta}{2}}}{e^{\frac{\beta}{2}}-e^{-\frac{\beta}{2}}}\right)\right]
$$

$$
=-\alpha\left[\left(\mathrm{J}+\frac{1}{2}\right) \operatorname{coth} \beta \frac{2 \mathrm{~J}+1}{2}-\frac{1}{2} \operatorname{coth} \frac{\beta}{2}\right]
$$

Define Brillouin function $\mathrm{B}_{\mathrm{J}}(\mathrm{x})$:
$B_{J}(x)=\frac{2 J+1}{2 J} \operatorname{coth} \frac{2 J+1}{2 J} x-\frac{1}{2 J} \operatorname{coth} \frac{1}{2 J} x$

We have

$$
\begin{aligned}
<\mathrm{m} & >=-\alpha J B_{J}(\beta J) \\
& =g \mu_{B} J B_{J}\left(g \mu_{B} J B / k_{B} T\right) \\
\therefore M & =\frac{N}{V}<m>=\frac{N}{V} g \mu_{B} J B_{J}\left(g \mu_{B} J B / k_{B} T\right)
\end{aligned}
$$

For small field, $\mathrm{g} \mu_{\mathrm{B}} \mathrm{JB} \ll \mathrm{k}_{\mathrm{B}} \mathrm{T} \quad(\mathrm{T}=1 \mathrm{~K}$ for $\mathrm{B}=1 \mathrm{~T})$

$$
\begin{aligned}
& \operatorname{coth} x=\frac{\mathrm{e}^{x}+\mathrm{e}^{-\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}} \approx \frac{1}{\mathrm{x}}+\frac{1}{3} \mathrm{x}+\mathrm{O}\left(\mathrm{x}^{3}\right)+\cdots \\
& \begin{aligned}
\mathrm{B}_{\mathrm{J}}(\mathrm{x}) & =\frac{2 \mathrm{~J}+1}{2 \mathrm{~J}} \operatorname{coth} \frac{2 \mathrm{~J}+1}{2 \mathrm{~J}} \mathrm{x}-\frac{1}{2 \mathrm{~J}} \operatorname{coth} \frac{1}{2 \mathrm{~J}} \mathrm{x} \\
& \approx\left(\frac{1}{\mathrm{x}}-\frac{1}{\mathrm{x}}\right)+\left[\frac{1}{3} \frac{(2 \mathrm{~J}+1)^{2}}{(2 \mathrm{~J})^{2}} \mathrm{x}-\frac{1}{3} \frac{1}{(2 \mathrm{~J})^{2}} \mathrm{x}\right] \\
& \approx \frac{\left(4 \mathrm{~J}^{2}+4 \mathrm{~J}\right)}{3(2 \mathrm{~J})^{2}} \mathrm{x} \\
& \approx \frac{\mathrm{~J}+1}{3 \mathrm{~J}} \mathrm{x} \\
\therefore \mathrm{M} & \approx \frac{\mathrm{NB}}{3 V k_{B} T}\left(\mathrm{~g} \mu_{\mathrm{B}}\right)^{2} \mathrm{~J}(\mathrm{~J}+1) \quad \text { for small } \mathrm{x} .
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\chi & =\frac{\partial M}{\partial B}
\end{aligned} \approx \frac{N}{3 V k_{B} T}\left(g \mu_{B}\right)^{2} J(J+1) \quad \text { for small field } B \\
&=\frac{N}{V} \frac{p^{2} \mu_{B}^{2}}{3 k_{B} T}
\end{aligned} \begin{aligned}
p & =\text { effective Bohr magnetron number } \\
& =g[J(J+1)]^{\frac{1}{2}}
\end{aligned}
$$

Susceptibility of paramagnetism follows Curie Law:

C is the Curie constant,

$$
\mathrm{C}=\frac{\mathrm{N}}{\mathrm{~V}} \frac{\mathrm{p}^{2} \mu_{\mathrm{B}}^{2}}{3 \mathrm{k}_{\mathrm{B}}}
$$

7. J, S and J can be estimated from Hund's rule. After J is estimated, g can be calculated with the Lande equation and the p (effective Bohr magnetron number) is known. The estimated value can be compared with experimental value. Notes:
(i) Hund's rule works well for most rare earth (4f electrons), and the calculated p is very close to the measured value. In some cases like Er^{3+} (Europium) and Sm^{3+} (Samarium), energy between the j -multiplets is too small and will cause problem in the $2^{\text {nd }}$ order perturbation.
(ii) Hund's rule does not work fine for transition metals (d electrons). In case of rare earth, the $4 f$ electrons are deep inside the ion and well covered by the 5 s and 5 p shells. This is not the case for the transition metals. The d-electrons are actually extended further out and exposed to the fields from the neighbors (crystal field). This crystal field will affect the LS coupling and modify Hund’s rule in calculating J.
(iii) Crystal field will not couple with S , because spin hjas no real space variables in it. However, the crystal field potential will couple with L. It will split the original degenerate l-orbtals >> $\mu \mathrm{B}$.

Example of crystal field splitting (p-orbitals):

(iv) Under the crystal field slitting, L_{z} is not a good quantum number any more. On average over time, $<\mathrm{L}_{\mathrm{z}}>=0$. Therefore, for transition metal, p (with 2 electrons in shell) should be calculated as $\mathrm{g}[\mathrm{s}(\mathrm{s}+1)]^{1 / 2}=2[\mathrm{~s}(\mathrm{~s}+1)]^{1 / 2}$ instead of $\mathrm{g}[\mathrm{j}(\mathrm{j}+1)]^{1 / 2}$, since L does not contribute to magnetic properties.
(v) For splitting of all degenerate orbitals, the crystal field cannot be symmetric, Very often, if the crystal is high symmetric (e.g. cubic), the ions will displaced themselves to produce a non-symmetric crystal potential to quench the angular momentum. This is called Jahn-Teller effect,

Pauli paramagnetism

1. Electron has spin, so free electrons demonstrate paramagnetic property, This is known as Pauli paramagnetism.
2. The effect of Pauli paramagnetism is very small, becayse electrons inside the Fermi sphere cannot flip their spins easily when nearly all states are occupied. Only electrons near the Fermi surface can contribute to Pauli paramagnetism. According to Curie Law:

$$
\chi=\frac{\mathrm{C}}{\mathrm{~T}} \quad \text { for small field }
$$

Percentage of electrons that have the freedom to flip spin $=T / T_{F}$.
$\therefore \chi$ for metal $=\frac{\mathrm{C}}{\mathrm{T}} \cdot \frac{\mathrm{T}}{\mathrm{T}_{\mathrm{F}}}=\frac{\mathrm{C}}{\mathrm{T}_{\mathrm{F}}}$
Pauli paramagnetism is independent of temperature.
3. More quantitative treatment:

When there is no field:

When an external field B is applied, say, in the \uparrow direction, it will lower the energy of the \uparrow electrons by $\mu \mathrm{B}$ and raise the energy of the \downarrow electrons by $\mu \mathrm{B}$

This treatment has ignored the spatial effect of magnetic field. In fact, the magnetic field can modify the electron wave function and produces diamagnetism. This diamagnetism is about $1 / 3$ of the above estimated paramagnetism in magnitude:

$$
\begin{aligned}
& \mathrm{M}_{\text {dia }}=-\frac{1}{3} \mathrm{M}_{\text {Pauli }}=-\frac{N \mu^{2}}{2 \mathrm{k}_{\mathrm{B}} \mathrm{~T}_{\mathrm{F}}} \mathrm{~B} \\
& \therefore \text { Total magnetism }=\mathrm{M}_{\text {Pauli }}+\mathrm{M}_{\text {dia }}=\frac{N \mu^{2}}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}_{\mathrm{F}}} B \\
& \chi_{\text {freeelection }}=\frac{\partial \mathrm{M}}{\partial \mathrm{~B}}=\frac{N \mu^{2}}{\mathrm{k}_{\mathrm{B}} \mathrm{~T}_{\mathrm{F}}}
\end{aligned}
$$

Long range magnetic ordering

1. Long range magnetic ordering is due to exchange field \mathbf{B}_{E} from neighbors. In other words, we assume an exchange field between neighbors that gives rise to long range ordering.
2. Magnetic ordered states has higher symmetry and it occurs only at low temperatures when $\mathrm{T}<\mathrm{T}_{\mathrm{c}} . \mathrm{T}_{\mathrm{c}}$ is the critical temperature of the magnetic transition.
3. Three common types of magnetic ordering:

Ferromagnetic ordering

Antiferromagnetic ordering

Ferrimagnetic ordering
4. It is clear from above schematic drawings that ferromagnetism and ferrimagnetism will give rise to spontaneous magnetisation then ordering occurs at $\mathrm{T}<\mathrm{T}_{\mathrm{c}}$. The antiferromagnetism will not produce any magneisation because of the two opposing spin components. When $\mathrm{T}>\mathrm{T}_{\mathrm{c}}$ there will be no ordering and the material has to be paramagnetic (i.e. the ions should have their own spin at the beginning).

Example: T_{c} for iron (Fe) is 1043 K . Iron is actually ferromagnetic possessing ordering and spontaneous magnetisation at room temperature. It is not a magnet because of domain formation.

Total magnetic moment $=0$

Ferromagnetism

1. The exchange field \mathbf{B}_{E} is approximated by the average magnetization field \mathbf{M} within the sample:

$$
\mathbf{B}_{\mathrm{E}}=\lambda \mathbf{M}
$$

where λ is a temperature independent constant. This is known as the mean field approximation. Note that now the exchange field will become stronger as temperature is lowered, because that is what \mathbf{M} does according to Curie Law.
2. When $T>T_{c}-$ Curie Weiss Law and relationship between λ and T_{c} :

If $\mathbf{B}_{\mathrm{a}}=$ applied field and $\chi_{\mathrm{P}}=$ paramagnetic susceptibility.

$$
\begin{aligned}
\vec{M} & =\chi_{P}\left(\vec{B}_{a}+\vec{B}_{E}\right) \\
& =\frac{C}{T}\left(\vec{B}_{a}+\vec{B}_{E}\right) \quad\left(\chi_{P}=\frac{C}{T}\right)
\end{aligned}
$$

Mean field approximation $\Rightarrow=\frac{C}{T}\left(\vec{B}_{a}+\lambda \vec{M}\right)$

$$
\begin{aligned}
& \Rightarrow\left(1-\frac{\lambda C}{T}\right) \vec{M}=\frac{C}{T} \vec{B}_{a} \\
& \Rightarrow \chi=\frac{\vec{M}}{\vec{B}_{a}}=\frac{C}{T-C \lambda}
\end{aligned}
$$

As $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}, \chi$ has to $\rightarrow \infty$ so that $\overrightarrow{\mathrm{M}}$ is finite (spon tan eous magnetisation) when $\overrightarrow{\mathrm{B}}_{\mathrm{a}}=0$.
i.e. $\quad T_{c}-C \lambda=0 \Rightarrow \lambda=\frac{T_{c}}{C}$

$$
\chi=\frac{\mathrm{C}}{\mathrm{~T}-\mathrm{T}_{\mathrm{c}}} \quad \text { Curie }- \text { Weiss Law for } \mathrm{T}>\mathrm{T}_{\mathrm{c}}
$$

More accurate renormalization group theoury gives $\chi \propto \frac{\mathrm{C}}{\left(\mathrm{T}-\mathrm{T}_{\mathrm{c}}\right)^{1.33}}$
For $\mathrm{j}=\frac{1}{2}$ and $\mathrm{g}=2\left(\right.$ hence $\mathrm{p}=\sqrt{3}$), $\mathrm{C}=\frac{\mathrm{N}}{\mathrm{V}} \frac{\mathrm{p}^{2} \mu_{\mathrm{B}}{ }^{2}}{3 \mathrm{k}_{\mathrm{B}}}=\frac{\mathrm{N}}{\mathrm{V}} \frac{\mu_{\mathrm{B}}{ }^{2}}{\mathrm{k}_{\mathrm{B}}} \Rightarrow \mathrm{T}_{\mathrm{c}}=\lambda \mathrm{C}=\frac{\mathrm{N} \mu_{\mathrm{B}}{ }^{2} \lambda}{\mathrm{k}_{\mathrm{B}} \mathrm{V}}$
3. When $\mathrm{T}>\mathrm{T}_{\mathrm{c}^{-}}$calculation of spontaneous magnetisation:
\mathbf{B}_{E} is so strong that \mathbf{B}_{a} can be ignored. i.e., $\mathbf{B}=\mathbf{B}_{\mathrm{a}}+\mathbf{B}_{\mathrm{E}} \sim \mathbf{B}_{\mathrm{E}}$. For simplicity, lwt us consider $\mathrm{j}=1 / 2$ (2 levels), and $\mathrm{g}=2$.

$$
\begin{aligned}
\mathrm{M}=-\alpha\left[\left(\mathrm{J}+\frac{1}{2}\right) \operatorname{coth} \beta \frac{2 \mathrm{~J}+1}{2}-\frac{1}{2} \operatorname{coth} \frac{\beta}{2}\right] & =\mathrm{g} \mu_{\mathrm{B}}\left[\operatorname{coth} \beta-\frac{1}{2} \operatorname{coth} \frac{\beta}{2}\right] \\
& =\mu_{\mathrm{B}}\left[2 \operatorname{coth} \beta-\operatorname{coth} \frac{\beta}{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\mu_{B}\left[2 \frac{e^{\beta}+e^{-\beta}}{e^{\beta}-e^{-\beta}}-\frac{e^{\beta / 2}+e^{-\beta / 2}}{e^{\beta / 2}-e^{-\beta / 2}}\right] \\
& =\mu_{B}\left[2 \frac{e^{\beta}+e^{-\beta}}{e^{\beta}-e^{-\beta}}-\frac{\left(e^{\beta / 2}+e^{-\beta / 2}\right)^{2}}{e^{\beta}-e^{-\beta}}\right] \\
& =\mu_{B}\left[\frac{e^{\beta}+e^{-\beta}-2}{e^{\beta}-e^{-\beta}}\right] \\
& =\mu_{B}\left[\frac{e^{\beta / 2}-e^{-\beta / 2}}{e^{\beta / 2}+e^{-\beta / 2}}\right] \\
& =\mu_{B} \tanh \beta / 2 \\
& =\mu_{B} \tanh \mu_{B} B / k_{B} T \quad\left(\beta=g \mu_{B} B / k_{B} T=2 \mu_{B} B / k_{B} T\right) \\
& =\mu_{B} \tanh \lambda \mu_{B} M / k_{B} T \quad(B \sim \lambda M)
\end{aligned}
$$

Let $\mathrm{m}=\frac{\mathrm{MV}}{\mathrm{N} \mu_{\mathrm{B}}}$ and $\mathrm{t}=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{TV}}{\mathrm{N} \mu_{\mathrm{B}}{ }^{2} \lambda} \quad\left(\frac{\mathrm{~m}}{\mathrm{t}}=\frac{\mathrm{MV}}{\mathrm{N} \mu_{\mathrm{B}}} \cdot \frac{\mathrm{N} \mu_{\mathrm{B}}{ }^{2} \lambda}{\mathrm{k}_{\mathrm{B}} \mathrm{TV}}=\frac{\mathrm{M} \mu_{\mathrm{B}} \lambda}{\mathrm{k}_{\mathrm{B}} T}\right)$

At $T=T_{c}$, or $t=\frac{k_{B} T_{c} V}{N \mu_{B}{ }^{2} \lambda}$, there is no solution because spontaneous magnetization ceased
to exist. At small m,

$$
\tanh \left(\frac{\mathrm{m}}{\mathrm{t}}\right) \sim\left(\frac{\mathrm{m}}{\mathrm{t}}\right)
$$

This curve $\mathrm{y} \sim \mathrm{m} / \mathrm{t}$ will have no solution with $\mathrm{y}=\mathrm{m}$ (except at $\mathrm{m}=0$) when

$$
\begin{aligned}
& \left(\frac{\mathrm{m}}{\mathrm{t}}\right)=\mathrm{m} \Rightarrow \mathrm{t}=1 \\
\therefore \quad & \frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}_{\mathrm{c}} \mathrm{~V}}{\mathrm{~N} \mu_{\mathrm{B}}{ }^{2} \lambda}=1 \Rightarrow \mathrm{~T}_{\mathrm{c}}=\frac{\mathrm{N} \mu_{\mathrm{B}}{ }^{2} \lambda}{\mathrm{k}_{\mathrm{B}} \mathrm{~V}}
\end{aligned}
$$

This is consistent with the result we derived from the side $T>T_{c}$.
4. Spontaneous magnetization neat T_{c} :

As $\mathrm{T} \rightarrow \mathrm{T}_{\mathrm{c}}, \mathrm{m}$ is small. Expansion of tanh x for small x :

$$
\begin{aligned}
& \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{2\left(x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)}{2\left(1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\cdots\right)} \\
& \\
& \approx\left(x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)\left(1-\frac{x^{2}}{2!}+\cdots\right) \\
& \\
& \approx x+\frac{x^{3}}{3!}-\frac{x^{3}}{2!}+O\left(x^{5}\right) \\
& \\
& \approx x-\frac{x^{3}}{3} \\
& m=\tanh \left(\frac{m}{t}\right) \Rightarrow m^{2}=\frac{m}{t}-\frac{1}{3}\left(\frac{m}{t}\right)^{3} \\
& \Rightarrow m^{2}=3 t^{2}(1-t) \\
& \Rightarrow m^{2}=3 \frac{T^{2}}{T_{c}^{3}}\left(T_{c}-T\right) \\
& \therefore M=\frac{N m}{V} \mu_{B} \propto \sqrt{T_{c}-T} \quad\left(T \rightarrow T_{c}\right)
\end{aligned}
$$

More accurate renormalization theoy gives

$$
\mathrm{M} \propto\left(\mathrm{~T}_{\mathrm{c}}-\mathrm{T}\right)^{0.33}
$$

Note that the behavior of M is similar to that of Δ in the case of syuperconductivity at $\mathrm{T} \sim$ T_{c}.
5. Low temperature excitations - magnons:

Consider N spins coupled to their neighbors:

$$
\mathrm{U}=-2 \mathrm{~J} \sum_{\mathrm{i}=1}^{\mathrm{N}} \overrightarrow{\mathrm{~S}}_{\mathrm{i}} \cdot \overrightarrow{\mathrm{~S}}_{\mathrm{i}+1} \quad \quad \text { (Heisenberg interaction) }
$$

U is minimum when all spins are parallel (ground state) at $\mathrm{T}=0$:

Ground state

$$
\mathrm{U}=-2 \mathrm{~J} \mathrm{NS}
$$

If we consider the j -th spin in antiparallel to the others,

$$
\begin{aligned}
U & =-2 J\left[\sum_{i=1}^{j-2} \overrightarrow{\mathrm{~S}}_{i} \cdot \overrightarrow{\mathrm{~S}}_{\mathrm{i}+1}+\sum_{\mathrm{i}=\mathrm{j}+1}^{\mathrm{N}} \overrightarrow{\mathrm{~S}}_{i} \cdot \overrightarrow{\mathrm{~S}}_{\mathrm{i}+1}-\overrightarrow{\mathrm{S}}_{\mathrm{j}-1} \cdot \overrightarrow{\mathrm{~S}}_{\mathrm{j}}-\overrightarrow{\mathrm{S}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{~S}}_{\mathrm{j}+1}\right] \\
& =-2 \mathrm{JS}^{2}[(\mathrm{~N}-2)-2] \\
& =-2 \mathrm{NJS}^{2}+8 J S^{2} \\
& =\mathrm{U}_{0}+8 \mathrm{JS}^{2}
\end{aligned}
$$

This will raise the system energy by an amount of $8 \mathrm{JS}^{2}$. This excitation energy will be smaller if we allow this antiparallel spin to be shared by all members of the system - formation of magnons.

Consider the j -th spin in the system:

$$
\begin{aligned}
U_{j} & =-2 J\left[\vec{S}_{j-1} \cdot \overrightarrow{\mathrm{~S}}_{\mathrm{j}}+\overrightarrow{\mathrm{S}}_{\mathrm{j}} \cdot \overrightarrow{\mathrm{~S}}_{\mathrm{j}+1}\right] \\
& =-2 \mathrm{~J} \overrightarrow{\mathrm{~S}}_{\mathrm{j}} \cdot\left[\overrightarrow{\mathrm{~S}}_{\mathrm{j}-1}+\overrightarrow{\mathrm{S}}_{\mathrm{j}+1}\right]
\end{aligned}
$$

S_{j} is related to its magnetic moment as

$$
\left.\begin{array}{rl}
\vec{\mu}_{\mathrm{j}} & =-g \mu_{\mathrm{B}} \stackrel{\mathrm{~S}}{\mathrm{j}} \\
\therefore \quad & U_{\mathrm{j}}
\end{array}=-\vec{\mu}_{\mathrm{j}}\left\{-\frac{2 \mathrm{~J}}{\mathrm{~g} \mu_{\mathrm{B}}} \cdot\left[\stackrel{\rightharpoonup}{S}_{\mathrm{j}-1}+\overrightarrow{\mathrm{S}}_{\mathrm{j}+1}\right]\right\}\right\}
$$

The term in \{ $\}$ can be identified as tne exchange field acting on the jth - spin as

$$
\overrightarrow{\mathrm{B}}_{\mathrm{Ej}}=-\frac{2 \mathrm{~J}}{\mathrm{~g} \mu_{\mathrm{B}}} \cdot\left[\stackrel{\rightharpoonup}{\mathrm{~S}}_{j-1}+\overrightarrow{\mathrm{S}}_{j+1}\right]
$$

Torque acting on the $\mathrm{j}-$ th spin $=\vec{\mu}_{\mathrm{j}} \times \overrightarrow{\mathrm{B}}_{\mathrm{E}}$

$$
\begin{aligned}
\therefore \quad \frac{d}{d t}\left(\hbar \vec{S}_{j}\right)=\vec{\mu}_{j} \times \vec{B}_{E j} & \Rightarrow \frac{d}{d t}\left(\vec{S}_{j}\right)=-\frac{g \mu_{B}}{\hbar} \vec{S}_{j} \times \vec{B}_{E j} \\
& \Rightarrow \frac{d}{d t}\left(\vec{S}_{j}\right)=\frac{2 J}{\hbar} \vec{S}_{j} \times\left(\vec{S}_{j-1}+\vec{S}_{j+1}\right)
\end{aligned}
$$

$$
\therefore \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{~S}_{\mathrm{j}}^{\mathrm{x}}\right)=\frac{2 \mathrm{~J}}{\hbar}\left[\mathrm{~S}_{\mathrm{j}}^{\mathrm{y}}\left(\mathrm{~S}_{\mathrm{j}-1}{ }^{z}+\mathrm{S}_{\mathrm{j}+1}{ }^{2}\right)-\mathrm{S}_{\mathrm{j}}^{\mathrm{z}}\left(\mathrm{~S}_{\mathrm{j}-1}^{\mathrm{y}}+\mathrm{S}_{\mathrm{j}+1}^{\mathrm{y}}\right)\right]
$$

Assume \mathbf{S}_{j} is not off aligned with the other spins so that $\mathrm{S}_{\mathrm{j}}^{\mathrm{X}}, \mathrm{S}_{\mathrm{j}}{ }^{\mathrm{y}} \ll \mathrm{S}_{\mathrm{j}}^{\mathrm{Z}}$. We can ignor second order terms like $\mathrm{S}_{\mathrm{j}}^{\mathrm{x}} \mathrm{S}_{\mathrm{j}}^{\mathrm{y}}$ and approximate $\mathrm{S}_{\mathrm{j}}^{\mathrm{Z}}$ as S . The equations of the j -th spin can the be written as:

$$
\begin{aligned}
& \frac{d}{d t}\left(S_{j}{ }^{x}\right)=\frac{2 J S}{\hbar}\left[2 S_{j}^{y}-\left(S_{j-1}^{y}+S_{j+1}^{y}\right)\right] \\
& \frac{d}{d t}\left(S_{j}^{y}\right)=-\frac{2 J S}{\hbar}\left[2 S_{j}^{x}-\left(S_{j-1}^{x}+S_{j+1}^{x}\right)\right] \\
& \frac{d}{d t}\left(S_{j}^{z}\right)=0
\end{aligned}
$$

Trial solution :

$$
\begin{aligned}
& S_{j}{ }^{x}=u e^{i(j k a-\omega t)} \\
& S_{j}{ }^{\mathrm{y}}=v e^{i(\mathrm{i} k-\omega t)}
\end{aligned}
$$

u, v are constants, amplitude that measure the maximum deviation of the spin. Substitute these trial solutions into the differential equations:

$$
\begin{aligned}
& -i \omega u e^{i(j k a-\omega t)}=\frac{2 \mathrm{Js}}{\hbar}\left[2 \mathrm{e}^{\mathrm{i}(\mathrm{jka}-\omega t)}-\mathrm{e}^{\mathrm{i}[(\mathrm{j}-1) \mathrm{ka}-\omega t]}-\mathrm{e}^{\mathrm{i}[(\mathrm{j}+1) \mathrm{ka}-\omega t]}\right] \\
\Rightarrow & -\mathrm{i} \omega \mathrm{u}=\frac{2 \mathrm{Js}}{\hbar} \mathrm{v}\left[2-\mathrm{e}^{-\mathrm{ika}}-\mathrm{e}^{\mathrm{ika}}\right] \\
\Rightarrow & -\mathrm{i} \omega \mathrm{u}=\frac{4 \mathrm{Js}}{\hbar} \mathrm{v}[1-\cos \mathrm{ka}]
\end{aligned}
$$

Similarly, from the equation for $\frac{d}{d t}\left(\mathrm{~S}_{\mathrm{j}}{ }^{\mathrm{y}}\right)$:

$$
-\mathrm{i} \omega \mathrm{v}=-\frac{4 \mathrm{Js}}{\hbar} \mathrm{u}[1-\cos \mathrm{ka}]
$$

u, v have non - trivial solution only if \{

$$
\begin{aligned}
& {\left[\left.\begin{array}{cc}
i \omega & \frac{4 \mathrm{Js}}{\hbar}[1-\cos \mathrm{ka}] \\
-\frac{4 \mathrm{Js}}{\hbar}[1-\cos \mathrm{ka}] & \mathrm{i} \omega
\end{array} \right\rvert\,=0\right.} \\
& \Rightarrow \omega^{2}=\left[\frac{4 \mathrm{Js}}{\hbar}[1-\cos \mathrm{ka}]\right]^{2} \\
& \Rightarrow \hbar \omega=4 \mathrm{Js}(1-\cos \mathrm{ka})
\end{aligned}
$$

If this condition is satisfy, solving for u and v :

$$
\left.\begin{array}{l}
-i \omega u=\omega v \\
-i \omega v=-\omega u
\end{array}\right\} \Rightarrow v=-i u
$$

$\therefore \mathrm{S}_{\mathrm{j}}{ }^{\mathrm{X}}$ and $\mathrm{S}_{\mathrm{j}}{ }^{\mathrm{y}}$ are 90 out of phase with equal amplitude. i.e. The spin is precessing circularly about the z-axis:

Top view:

"Normal mode" of spin dynamics
$\hbar \omega$
Spin dynamics is "quantized" into magnons, each of energy . Any spin configuration can be expressed as combination of these magnons.
Dispersion relation of magnons:

$$
\begin{aligned}
\hbar \omega & =4 \mathrm{Js}(1-\cos \mathrm{ka}) \\
& =8 \mathrm{Js} \sin ^{2} \frac{1}{2} \mathrm{ka}
\end{aligned}
$$

For small k,

$$
\hbar \omega \sim 8 \mathrm{Js} \cdot\left(\frac{1}{2} \mathrm{ka}\right)^{2}=2 \mathrm{Jsk}^{2} \mathrm{a}^{2}
$$

$$
\therefore \mathrm{E} \propto \mathrm{k}^{2} \text { for small } \mathrm{k} \text {. }
$$

6. Thermal excitations of magnons:

We can derive the thermal properties of magnons from the dispersion relationship.
Similar to the case of phonons, magnons are bosons:

$$
<\mathrm{n}_{\overline{\mathrm{k}}}>=\frac{1}{\exp \left(\hbar \omega_{\overline{\mathrm{k}}} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right)-1}
$$

Each magnon has a spin of s. 1 magnon corresponds to 1 spin flip out of Ns.

$$
\begin{aligned}
\therefore \mathrm{M}(\mathrm{~T}) & =\mathrm{M}(0)\left[1-\frac{\text { Number of magnons }}{N s}\right] \\
& =\mathrm{M}(0)\left[1-\frac{\sum \mathrm{n}_{\overline{\mathrm{k}}}}{\mathrm{Ns}}\right] \\
\frac{\Delta \mathrm{M}}{\mathrm{M}(0)} & =\frac{\mathrm{M}(0)-\mathrm{M}(\mathrm{~T})}{\mathrm{M}(0)}=\frac{\sum \mathrm{n}_{\overline{\mathrm{k}}}}{\mathrm{Ns}} \\
\sum \mathrm{n}_{\overline{\mathrm{k}}} & =\int \mathrm{d} \omega \mathrm{D}(\omega)<\mathrm{n}(\omega)>=\int \mathrm{d} \omega \mathrm{D}(\omega) \frac{1}{\exp \left(\hbar \omega_{\overline{\mathrm{k}}} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right)-1}
\end{aligned}
$$

Approximate the whole band by that of small k :

$$
\begin{aligned}
& \hbar \omega=2 \mathrm{Jsk}^{2} \mathrm{a}^{2} \Rightarrow \frac{\mathrm{~d} \omega}{\mathrm{dk}}=\frac{4 \mathrm{Jska}{ }^{2}}{\hbar}=\frac{4 \mathrm{Jsa}^{2}}{\hbar} \sqrt{\frac{\hbar \omega}{2 \mathrm{Jsa}^{2}}}=2 \sqrt{\frac{2 \mathrm{Jsa}^{2} \omega}{\hbar}} \\
& \begin{aligned}
& \therefore \mathrm{D}(\omega) \mathrm{d} \omega=\frac{4 \pi \mathrm{k}^{2} \mathrm{dk}}{\frac{(2 \pi)^{3}}{\mathrm{~V}}} \Rightarrow \mathrm{D}(\omega)=\frac{4 \pi \mathrm{k}^{2}}{\frac{(2 \pi)^{3}}{\mathrm{~V}}} \frac{\mathrm{dk}}{\mathrm{~d} \omega}=\frac{\mathrm{Vk}^{2}}{2 \pi^{2}} \frac{\mathrm{dk}}{\mathrm{~d} \omega} \\
& \Rightarrow \mathrm{D}(\omega)=\frac{\mathrm{Vk}^{2}}{2 \pi^{2}} \cdot \frac{1}{2} \sqrt{\frac{\hbar}{2 \mathrm{Jsa}^{2} \omega}} \\
& \Rightarrow \mathrm{D}(\omega)=\frac{\mathrm{V}}{2 \pi^{2}} \cdot \frac{\hbar \omega}{2 \mathrm{Jsa}^{2}} \cdot \frac{1}{2} \sqrt{\frac{\hbar}{2 \mathrm{Jsa}{ }^{2} \omega}} \\
& \Rightarrow \mathrm{D}(\omega)=\frac{\mathrm{V}}{4 \pi^{2}} \cdot\left(\frac{\hbar}{2 \mathrm{Jsa}^{2}}\right)^{\frac{3}{2}} \sqrt{\omega} \\
& \therefore \sum \mathrm{n}_{\overline{\mathrm{k}}}=\int \mathrm{d} \omega\left[\frac{\mathrm{~V}}{4 \pi^{2}} \cdot\left(\frac{\hbar}{2 \mathrm{Jsa}{ }^{2}}\right)^{\frac{3}{2}} \sqrt{\omega}\right] \frac{1}{\exp ^{2}\left(\hbar \omega_{\overline{\mathrm{k}}} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right)-1} \\
&=\frac{\mathrm{V}}{4 \pi^{2}} \cdot\left(\frac{\hbar}{2 \mathrm{Jsa}^{2}}\right)^{\frac{3}{2}} \int_{0}^{\infty} \mathrm{d} \omega \frac{\sqrt{\omega}}{\exp \left(\hbar \omega_{\overline{\mathrm{k}}} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right)-1}
\end{aligned}
\end{aligned}
$$

Let $\frac{\hbar \omega}{\mathrm{k}_{\mathrm{B}} \mathrm{T}}=\mathrm{x}$ and $\sqrt{\omega}=\sqrt{\frac{\mathrm{k}_{\mathrm{B}} \mathrm{Tx}}{\hbar}}, \mathrm{d} \omega=\frac{\mathrm{k}_{\mathrm{B}} \mathrm{T}}{\hbar} \mathrm{dx}$

$$
\sum \mathrm{n}_{\overline{\mathrm{k}}}=\frac{\mathrm{V}}{4 \pi^{2}} \cdot\left(\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{2 \mathrm{Jsa}^{2}}\right)^{\frac{3}{2}} \underbrace{\int_{0}^{\infty} \mathrm{dx} \frac{\sqrt{\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}-1}}_{=(0.0587)\left(4 \pi^{2}\right)=\mathrm{A} 4 \pi^{2}}
$$

$$
\begin{aligned}
& \therefore \sum \mathrm{n}_{\overline{\mathrm{k}}}=\mathrm{AV}\left(\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{2 \mathrm{Jsa}^{2}}\right)^{\frac{3}{2}} \\
& \frac{\Delta \mathrm{M}}{\mathrm{M}(0)}=\frac{\sum \mathrm{n}_{\overline{\mathrm{k}}}}{\mathrm{Ns}}=\frac{0.0587 \mathrm{~V}}{\mathrm{Ns}}\left(\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{2 \mathrm{Jsa}^{2}}\right)^{\frac{3}{2}}=\frac{\mathrm{A}}{\mathrm{~ns}}\left(\frac{\mathrm{k}_{\mathrm{B}} \mathrm{~T}}{2 \mathrm{Jsa}^{2}}\right)^{\frac{3}{2}} \quad\left(\mathrm{n}=\frac{\mathrm{N}}{\mathrm{~V}}\right) \\
& \therefore \frac{\Delta \mathrm{M}}{\mathrm{M}(0)} \sim \mathrm{T}^{\frac{3}{2}} \text { at low temperature. }
\end{aligned}
$$

Ferrimagnetic order

1. Example:

Magnetite

At low temperatures:

$\mathrm{N}(0)$ is much smaller than that by considering $\mathrm{Fe}_{3} \mathrm{O}_{4}$ as ferromagnetic.

In genetal:

Ferrimagnetic ordering
Exchange field on site A:

$$
\overrightarrow{\mathrm{B}}_{\mathrm{A}}=\underbrace{\mu \overrightarrow{\mathrm{M}}_{\mathrm{A}}}_{\text {Due to sublatice } \mathrm{A}}-\underbrace{\lambda \overrightarrow{\mathrm{M}}_{\mathrm{B}}}_{\text {Due to sublattice } \mathrm{B}}
$$

Exchange field on site B:

$$
\overrightarrow{\mathrm{B}}_{\mathrm{B}}=\underbrace{-\lambda \overrightarrow{\mathrm{M}}_{\mathrm{A}}}_{\text {Due to sublatice } \mathrm{A}}+\underbrace{v \overrightarrow{\mathrm{M}}_{\mathrm{B}}}_{\text {Due to sublatice } \mathrm{B}}
$$

For ferromagnetic order to occur, $\lambda \gg \mu, v$:

$$
\begin{aligned}
\therefore \stackrel{\rightharpoonup}{\mathrm{B}}_{\mathrm{A}} & =\underbrace{-\lambda \overrightarrow{\mathrm{M}}_{\mathrm{B}}}_{\text {Due to sublatice } \mathrm{B}} \\
\stackrel{\rightharpoonup}{\mathrm{~B}}_{\mathrm{B}} & =\underbrace{-\lambda \overrightarrow{\mathrm{M}}_{\mathrm{A}}}_{\text {Due to subbaticice } \mathrm{A}}
\end{aligned}
$$

Let the Curie constants of sublattice A and B be C_{A} and C_{B} respectively. Mean field theory, when $T>T_{c}$:

$$
\begin{aligned}
& \overrightarrow{\mathrm{M}}_{\mathrm{A}}=\frac{C}{T}(\underbrace{\stackrel{\rightharpoonup}{\mathrm{~B}}_{a}}_{\text {Applied field }}+\overrightarrow{\mathrm{B}}_{\mathrm{A}})=\frac{\mathrm{C}_{A}}{T}\left(\stackrel{\rightharpoonup}{\mathrm{~B}}_{\mathrm{a}}-\lambda \overrightarrow{\mathrm{M}}_{\mathrm{B}}\right) \\
& \overrightarrow{\mathrm{M}}_{\mathrm{B}}=\frac{C}{\mathrm{~T}}(\underbrace{\stackrel{\rightharpoonup}{\mathrm{~B}}_{a}}_{\text {Applied fiedd }}+\overrightarrow{\mathrm{B}}_{A})=\frac{C_{B}}{T}\left(\overrightarrow{\mathrm{~B}}_{\mathrm{a}}-\lambda \overrightarrow{\mathrm{M}}_{A}\right)
\end{aligned}
$$

At $T=T_{c}$, ignoring \vec{B}_{A}, for non - trivial solution of \vec{M}_{A} and \vec{M}_{B} :

$$
\left.\begin{array}{rl}
& \left|\begin{array}{cc}
\mathrm{T}_{\mathrm{c}} & \lambda \mathrm{C}_{\mathrm{A}} \\
\lambda \mathrm{C}_{\mathrm{B}} & \mathrm{~T}_{\mathrm{c}}
\end{array}\right|=0 \\
\Rightarrow & \mathrm{~T}_{\mathrm{c}}^{2}-\lambda^{2} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}=0 \\
& \Rightarrow \mathrm{~T}_{\mathrm{c}}=\lambda \sqrt{\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}} \\
\overrightarrow{\mathrm{M}}_{\mathrm{A}}= & \frac{\mathrm{C}_{\mathrm{A}}}{\mathrm{~T}}\left(\overrightarrow{\mathrm{~B}}_{\mathrm{a}}-\lambda \overrightarrow{\mathrm{M}}_{\mathrm{B}}\right) \\
\overrightarrow{\mathrm{M}}_{\mathrm{B}}= & =\frac{\mathrm{C}_{\mathrm{B}}}{\mathrm{~T}}\left(\overrightarrow{\mathrm{~B}}_{\mathrm{a}}-\lambda \overrightarrow{\mathrm{M}}_{\mathrm{A}}\right)
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\overrightarrow{\mathrm{M}}_{\mathrm{A}}+\frac{\lambda \mathrm{C}_{\mathrm{A}}}{\mathrm{~T}} \overrightarrow{\mathrm{M}}_{\mathrm{B}}=\frac{\mathrm{C}_{\mathrm{A}}}{\mathrm{~T}} \overrightarrow{\mathrm{~B}}_{\mathrm{a}} \\
\overrightarrow{\mathrm{M}}_{\mathrm{B}}+\frac{\lambda \mathrm{C}_{\mathrm{B}}}{\mathrm{~T}} \overrightarrow{\mathrm{M}}_{\mathrm{A}}=\frac{\mathrm{C}_{\mathrm{B}}}{\mathrm{~T}} \overrightarrow{\mathrm{~B}}_{\mathrm{a}}
\end{array}\right.
$$

$$
\begin{aligned}
& \Rightarrow\left\{\begin{array}{l}
\left(1-\frac{\lambda^{2} \mathrm{C}_{A} \mathrm{C}_{B}}{\mathrm{~T}^{2}}\right) \overrightarrow{\mathrm{M}}_{\mathrm{A}}=\left(\frac{\mathrm{C}_{\mathrm{A}}}{\mathrm{~T}}-\frac{\lambda \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}}{\mathrm{~T}^{2}}\right) \stackrel{\rightharpoonup}{\mathrm{B}}_{\mathrm{a}} \\
\left(1-\frac{\lambda^{2} \mathrm{C}_{A} \mathrm{C}_{\mathrm{B}}}{\mathrm{~T}^{2}}\right) \overrightarrow{\mathrm{M}}_{\mathrm{B}}=\left(\frac{\mathrm{C}_{\mathrm{B}}}{\mathrm{~T}}-\frac{\lambda \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}}{\mathrm{~T}^{2}}\right) \stackrel{\rightharpoonup}{\mathrm{B}}_{\mathrm{a}}
\end{array}\right. \\
& \Rightarrow\left(1-\frac{\lambda^{2} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}}{\mathrm{~T}^{2}}\right)\left(\overrightarrow{\mathrm{M}}_{\mathrm{A}}+\overrightarrow{\mathrm{M}}_{\mathrm{B}}\right)=\left(\frac{\mathrm{C}_{\mathrm{A}}+\mathrm{C}_{\mathrm{B}}}{\mathrm{~T}}-\frac{2 \lambda \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}}{\mathrm{~T}^{2}}\right) \stackrel{\rightharpoonup}{B}_{\mathrm{a}} \\
& \Rightarrow \chi=\frac{\overrightarrow{\mathrm{M}}_{\mathrm{A}}+\overrightarrow{\mathrm{M}}_{\mathrm{B}}}{\overrightarrow{\mathrm{~B}}_{\mathrm{a}}}=\frac{\frac{\mathrm{C}_{\mathrm{A}}+\mathrm{C}_{\mathrm{B}}}{\mathrm{~T}}-\frac{2 \lambda \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}}{\mathrm{~T}^{2}}}{1-\frac{\lambda^{2} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}}{\mathrm{~T}^{2}}} \\
& =\frac{\left(\mathrm{C}_{\mathrm{A}}+\mathrm{C}_{\mathrm{B}}\right) \mathrm{T}-2 \lambda \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}}{\mathrm{~T}^{2}-\lambda^{2} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}} \\
& =\frac{\left(C_{A}+C_{B}\right) T-2 T_{c} \sqrt{C_{A} C_{B}}}{T^{2}-T_{c}{ }^{2}}
\end{aligned}
$$

Antiferromangetism

1. Ferromagnetic ordering

Exchange field: J>0

Critical temperature: Curie temperature T_{C}

Antiferromagnetic ordering

Exchange field: $\mathrm{J}<0$

Critical temperature:
Neel temperature T_{N}
2. Antiferromagnetism is a special case of ferrimagnetism with $C_{A}=C_{B}$, i.e.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{c}} \rightarrow \mathrm{~T}_{\mathrm{N}}=\lambda \sqrt{\mathrm{C}^{2}}=\lambda \mathrm{C} \\
& \chi=\frac{\left(\mathrm{C}_{\mathrm{A}}+\mathrm{C}_{\mathrm{B}}\right) \mathrm{T}-2 \mathrm{~T}_{\mathrm{c}} \sqrt{\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}}}{\mathrm{~T}^{2}-\mathrm{T}_{\mathrm{c}}^{2}}=\frac{2 \mathrm{CT}-2 \mathrm{~T}_{\mathrm{N}} \sqrt{\mathrm{C}^{2}}}{\mathrm{~T}^{2}-\mathrm{T}_{\mathrm{N}}^{2}} \\
\Rightarrow & \chi=\frac{2 \mathrm{C}}{\mathrm{~T}+\mathrm{T}_{\mathrm{N}}}
\end{aligned}
$$

Experimentally,

$$
\chi=\frac{2 \mathrm{C}}{\mathrm{~T}-\theta} \quad\left(\theta \text { is not exactly } \mathrm{T}_{\mathrm{N}} \text { because of next }- \text { nearest neighbor interaction }\right)
$$

3. When $\mathrm{T}<\mathrm{T}_{\mathrm{N}}$:

Case 1. If $\mathbf{B}_{\mathrm{a}} \perp$ axis of spin

$$
\text { Let } \mathrm{M}=\left|\mathbf{M}_{\mathrm{A}}\right|=\left|\mathbf{M}_{\mathrm{B}}\right|
$$

$$
\begin{aligned}
\mathrm{U} & =-\frac{1}{2}\left(\overrightarrow{\mathrm{~B}}_{\mathrm{A}} \cdot \overrightarrow{\mathrm{M}}_{\mathrm{A}}+\overrightarrow{\mathrm{B}}_{\mathrm{B}} \cdot \overrightarrow{\mathrm{M}}_{\mathrm{B}}\right)-\overrightarrow{\mathrm{B}}_{\mathrm{a}} \cdot\left(\overrightarrow{\mathrm{M}}_{\mathrm{A}}+\overrightarrow{\mathrm{M}}_{\mathrm{B}}\right) \quad\left(\overrightarrow{\mathrm{B}}_{\mathrm{A}} \text { and } \overrightarrow{\mathrm{B}}_{\mathrm{B}} \text { are exchange fields }\right) \\
& =-\frac{1}{2}\left(-\lambda \overrightarrow{\mathrm{M}}_{\mathrm{B}} \cdot \overrightarrow{\mathrm{M}}_{\mathrm{A}}--\lambda \overrightarrow{\mathrm{M}}_{A} \cdot \overrightarrow{\mathrm{M}}_{\mathrm{B}}\right)-\overrightarrow{\mathrm{B}}_{\mathrm{a}} \cdot\left(\overrightarrow{\mathrm{M}}_{\mathrm{A}}+\overrightarrow{\mathrm{M}}_{\mathrm{B}}\right) \\
& =\lambda \overrightarrow{\mathrm{M}}_{\mathrm{B}} \cdot \overrightarrow{\mathrm{M}}_{\mathrm{A}}-\overrightarrow{\mathrm{B}}_{a} \cdot\left(\overrightarrow{\mathrm{M}}_{\mathrm{A}}+\overrightarrow{\mathrm{M}}_{\mathrm{B}}\right) \\
& =\lambda \mathrm{M}^{2} \cos \left(180^{\circ}-2 \phi\right)-2 M \mathrm{~B}_{\mathrm{a}} \cdot \cos \left(90^{\circ}-\phi\right) \\
& =-\lambda \mathrm{M}^{2} \cos 2 \phi-2 M \mathrm{~B}_{\mathrm{a}} \sin \phi \\
& \approx-\lambda \mathrm{M}^{2}\left[1-\frac{1}{2}(2 \phi)^{2}\right]-2 M B_{a} \phi
\end{aligned}
$$

To minimize U :
$\frac{\mathrm{dU}}{\mathrm{d} \phi}=0 \Rightarrow 4 \lambda \mathrm{M}^{2} \phi-2 M \mathrm{~B}_{\mathrm{a}}=0$

$$
\begin{aligned}
U & =-\frac{1}{2}\left(\overrightarrow{\mathrm{~B}}_{\mathrm{A}} \cdot \overrightarrow{\mathrm{M}}_{A}+\overrightarrow{\mathrm{B}}_{\mathrm{B}} \cdot \overrightarrow{\mathrm{M}}_{\mathrm{B}}\right)-\overrightarrow{\mathrm{B}}_{\mathrm{a}} \cdot\left(\overrightarrow{\mathrm{M}}_{\mathrm{A}}+\overrightarrow{\mathrm{M}}_{\mathrm{B}}\right) \quad\left(\overrightarrow{\mathrm{B}}_{\mathrm{A}} \text { and } \overrightarrow{\mathrm{B}}_{\mathrm{B}} \text { are exchange fields }\right) \\
& =-\frac{1}{2}\left(-\lambda \overrightarrow{\mathrm{M}}_{\mathrm{B}} \cdot \overrightarrow{\mathrm{M}}_{A}--\lambda \overrightarrow{\mathrm{M}}_{A} \cdot \overrightarrow{\mathrm{M}}_{\mathrm{B}}\right)-\overrightarrow{\mathrm{B}}_{\mathrm{a}} \cdot\left(\overrightarrow{\mathrm{M}}_{\mathrm{A}}+\overrightarrow{\mathrm{M}}_{\mathrm{B}}\right) \\
& =\lambda \overrightarrow{\mathrm{M}}_{\mathrm{B}} \cdot \overrightarrow{\mathrm{M}}_{A}-\overrightarrow{\mathrm{B}}_{a} \cdot\left(\overrightarrow{\mathrm{M}}_{A}+\overrightarrow{\mathrm{M}}_{\mathrm{B}}\right) \\
& =\lambda \mathrm{M}^{2} \cos \left(180^{\circ}-2 \phi\right)-2 M \mathrm{~B}_{\mathrm{a}} \cdot \cos \left(90^{\circ}-\phi\right) \\
& =-\lambda \mathrm{M}^{2} \cos 2 \phi-2 M \mathrm{~B}_{\mathrm{a}} \sin \phi \\
& \approx-\lambda \mathrm{M}^{2}\left[1-\frac{1}{2}(2 \phi)^{2}\right]-2 M B_{a} \phi
\end{aligned}
$$

To minimize U :

$$
\begin{aligned}
\frac{\mathrm{dU}}{\mathrm{~d} \phi}=0 & \Rightarrow 4 \lambda \mathrm{M}^{2} \phi-2 \mathrm{MB}_{\mathrm{a}}=0 \\
& \Rightarrow \phi=\frac{\mathrm{B}_{\mathrm{a}}}{2 \lambda \mathrm{M}} \\
\therefore \quad \chi_{\perp} & =\frac{2 \mathrm{Msin} \phi}{\mathrm{~B}_{\mathrm{a}}} \approx 2 \mathrm{M} \cdot \frac{\mathrm{~B}_{\mathrm{a}}}{2 \lambda \mathrm{M}} \cdot \frac{1}{\mathrm{~B}_{\mathrm{a}}}=\frac{1}{\lambda} \quad\left(=\frac{\mathrm{C}}{\mathrm{~T}_{\mathrm{N}}}\right)
\end{aligned}
$$

Case 2. If $\mathbf{B}_{\mathrm{a}} / /$ axis of spin
There is no change in $\mathrm{U} . \quad \therefore \chi_{/ /}(0)=0$

4. Antiferromagnetic magnons:

$$
\begin{aligned}
& -i \omega u e^{i(j k a-\omega t)}=\frac{2 J s}{\hbar}\left[2 \mathrm{e}^{\mathrm{i}(j \mathrm{jka}-\omega t)}-\mathrm{e}^{\mathrm{i}[(j-1) \mathrm{ka}-\omega t]}-\mathrm{e}^{\mathrm{i}[(j+1) \mathrm{ka}-\omega t]}\right] \\
\Rightarrow & -\mathrm{i} \omega \mathrm{u}=\frac{2 \mathrm{Js}}{\hbar} \mathrm{v}\left[2-\mathrm{e}^{-\mathrm{i} k a}-\mathrm{e}^{\mathrm{i} \mathrm{ka}}\right] \\
\Rightarrow & -\mathrm{i} \omega \mathrm{u}=\frac{4 \mathrm{Js}}{\hbar} \mathrm{v}[1-\cos k a]
\end{aligned}
$$

Similarly, from the equation for $\frac{d}{d t}\left(S_{j}{ }^{y}\right)$:

$$
-i \omega v=-\frac{4 J s}{\hbar} u[1-\cos k a]
$$

u, v have non - trivial solution only if \{

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathrm{i} \omega & \frac{4 \mathrm{Js}}{\hbar}[1-\cos \mathrm{ka}] \\
-\frac{4 \mathrm{Js}}{\hbar}[1-\cos \mathrm{ka}] & \mathrm{i} \omega
\end{array}\right]=0} \\
& \Rightarrow \omega^{2}=\left[\frac{4 \mathrm{Js}}{\hbar}[1-\cos \mathrm{ka}]\right]^{2} \\
& \Rightarrow \hbar \omega=4 \mathrm{Js}(1-\cos \mathrm{ka})
\end{aligned}
$$

If this condition is satisfy, solving for u and v :

$$
\left.\begin{array}{c}
-i \omega u=\omega v \\
-i \omega v=-\omega u
\end{array}\right\} \Rightarrow v=-i u
$$

From case of ferromagnetism:
Now, if lattice A corresponds to even indices (2j) and lattice B to odd indices $(2 j+1)$, then $S_{2 j}{ }^{x}$ should have opposite sign with $S_{2 j-1}{ }^{x}$ and $S_{2 j+1}{ }^{X}$. Rewriting the equation for ferromagnetism:

$$
\begin{aligned}
& \quad \frac{d}{d t}\left(S_{j}{ }^{x}\right)=\frac{2 J}{\hbar}\left[S_{j}{ }_{j}^{y}\left(S_{j-1}{ }^{z}+S_{j+1}{ }^{z}\right)-S_{j}{ }^{z}\left(S_{j-1}{ }^{y}+S_{j+1}{ }^{y}\right) \quad\right. \text { (feromagnetic) } \\
& \xrightarrow[\text { rewritten }]{ } \frac{d}{d t}\left(S_{2 j}{ }^{x}\right)=\frac{2 J}{\hbar}\left[S_{2 j}{ }^{y}\left(-S_{2 j-1}{ }^{z}-S_{2 j+1}{ }^{z}\right)-S_{2 j}{ }^{z}\left(S_{2 j-1}{ }^{y}+S_{2 j+1}^{y}\right)\right] \quad \text { (antiferromagnetic) } \\
& \Rightarrow \\
& \left.\Rightarrow \frac{d}{d t}\left(S_{2 j}{ }^{x}\right)=\frac{2 J S}{\hbar}\left[-2 S_{2 j}{ }^{y}-S_{2 j-1}{ }^{y}-S_{2 j+1}{ }^{y}\right)\right] \quad\left(S_{2 j}{ }^{z}=S\right)
\end{aligned}
$$

and similarly,

$$
\left.\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{~S}_{2 \mathrm{j}}{ }^{\mathrm{y}}\right)=-\frac{2 \mathrm{JS}}{\hbar}\left[2 \mathrm{~S}_{2 j}{ }^{\mathrm{x}}-\mathrm{S}_{2 j-1}{ }^{\mathrm{x}}-\mathrm{S}_{2 j+1}{ }^{\mathrm{x}}\right)\right]
$$

Let $\mathrm{S}^{+}=\mathrm{S}^{\mathrm{x}}+\mathrm{i} \mathrm{S}^{\mathrm{y}}$
$\left.\therefore \quad \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{S}_{2 \mathrm{j}}{ }^{+}\right)=\frac{2 \mathrm{iJS}}{\hbar}\left[2 \mathrm{~S}_{2 \mathrm{j}}{ }^{+}+\mathrm{S}_{2 \mathrm{j}-1}{ }^{+}+\mathrm{S}_{2 \mathrm{j}+1}{ }^{+}\right)\right]$

Corresponding equations for lattice B :

$$
\begin{aligned}
& \frac{d}{d t}\left(S_{2 j+1}^{x}\right)=\frac{2 J S}{\hbar}\left[2 S_{2 j+1}^{y}-S_{2 j}^{y}-S_{2 j+2}^{y}\right] \quad\left(S_{2 j}^{z}=S\right) \\
& \frac{d}{d t}\left(S_{2 j+1}^{y}\right)=-\frac{2 J S}{\hbar}\left[2 S_{2 j+1}^{x}-S_{2 j}^{x}-S_{2 j+2}^{x}\right] \\
& \text { Let } S^{+}=S^{x}+i S^{y} \\
& \left.\therefore \frac{d}{d t}\left(S_{2 j+1}^{+}\right)=-\frac{2 i J S}{\hbar}\left[2 S_{2 j+1}^{+}+S_{2 j}^{+}+S_{2 j+2}^{+}\right)\right]
\end{aligned}
$$

Trial solution :
$\mathrm{S}_{2 \mathrm{j}}{ }^{+}=\mathrm{u}^{\mathrm{i}[(2 \mathrm{j}) \mathrm{ka}-\omega t]}$ and $\mathrm{S}_{2 \mathrm{j}+1}{ }^{+}=\mathrm{u}^{\mathrm{i}[(2 j+1) \mathrm{ka}-\omega t]}$
Above defferential equations become

$$
\begin{aligned}
& -i \omega u=\frac{2 i J S}{\hbar}\left[2 u+v e^{-i k a}+v e^{i k a}\right] \\
\Rightarrow & \omega u=-\frac{4 J S}{\hbar}[u+v \cos k a] \\
& -i \omega u=-\frac{2 i J S}{\hbar}\left[2 v+u e^{-i k a}+u e^{i k a}\right] \\
\Rightarrow & \omega v=[v+u \cos k a]
\end{aligned}
$$

For non - trivial solution :

$$
\begin{aligned}
\left|\begin{array}{cc}
\omega+\frac{4 \mathrm{JS}}{\hbar} & \frac{4 \mathrm{JS}}{\hbar} \cos \mathrm{ka} \\
-\frac{4 \mathrm{JS}}{\hbar} \cos \mathrm{ka} & \omega-\frac{4 \mathrm{JS}}{\hbar}
\end{array}\right|= & \Rightarrow\left(\omega+\frac{4 \mathrm{JS}}{\hbar}\right)\left(\omega-\frac{4 \mathrm{JS}}{\hbar}\right)+\left(\frac{4 \mathrm{JS}}{\hbar} \cos \mathrm{ka}\right)^{2}=0 \\
& \Rightarrow \omega^{2}=\left(\frac{4 \mathrm{JS}}{\hbar}\right)^{2}-\left(\frac{4 \mathrm{JS}}{\hbar} \cos \mathrm{ka}\right)^{2} \\
& \Rightarrow \omega^{2}=\left(\frac{4 \mathrm{JS}}{\hbar}\right)^{2}(1-\cos \mathrm{ka})^{2} \\
& \Rightarrow \omega^{2}=\left(\frac{4 \mathrm{JS}}{\hbar}\right)^{2} \sin ^{2} \mathrm{ka} \\
& \left.\Rightarrow \omega=\left(\frac{4 \mathrm{JS}}{\hbar}\right) \right\rvert\, \sin \mathrm{ka}
\end{aligned}
$$

Domains

1. Spin in a material with long range magnetic ordering (ferromagnetic, antiferromagnetic etc.) form domains.

2. Reason for domain formation:

Higher energy

Lower energy
3. For small field: domain size will change in accordance to the direction of the magnetic field. Change in domain size can be reversible or irreversible.

4. For large field: domain magnetization will re-align with the external field.

5.

6. Irreversible boundary displacement and magnetization rotation are the causes of hystersis:

