
Chapter 11.  Magnetism 
 
Diamagnetism 
 
1. Magnetisation M of diamagnetic material is opposite to the total magnetic field B 
(and applied field H), hence the magnetic susceptibility χ is negative.  Magnetic 
susceptibility is defined as χ= ∂M/∂B. 
 
2. Diamagnetism is a characteristic of atoms with closed shell.  Electrons will 
response to external field by Faraday’s Law.  Currents will arrange themselves to oppose 
the change of increasing field, and hence M is in the opposite direction of H.   
 
3. Classical theory of diagmagnetism: 
 Consider an electron in a circular orbit of radius r and angular frequency ω. 
 
 
 
 
 
 
 
 
 

If a magnetic field δB is turned on, and assume it affect ω only. 
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Classically, the B field will make the charge q revolve faster if q is positive.  If the 
particle is an electron, it will revolve slower. 
 
Current formed by the loop = I = Charge × revolution / second 
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Paramagnetism 
 
1. When atoms possess their own magnetic moment, paramagnetism will occur. 
 
2. Intrinsic magnetic moment if related to the total angular momentum (including 
orbital and spin) of the electrons in an atom. 

γ is the gyromagnetic ratio, g is the g-factor, and µB is the Bohr magneton. 

3. For the spin of a free electron, g=2. For the orbital momentum of an electron, g=1.   
 
 For a free atom, g is given by the Lande g-factor: 
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4. Original quantum number: L,Lz, S, Sz. 
 Quantum number after LS coupling:  L, S, J, Jz. 

Atomic notation: 
  2S+1Lj 
 L = S, P, D, F, G, H, …. for l = 0,1, 2, 3, 4, …. sespectively.  
 
5. Quantum number j for the total angular momentum is determined by Hund’s rule: 
 Let there be x electrons in the outer shell.  Each shell can hold y electrons. 
 s shell can hold y=2 electrons. 

p shell can hold y=6 electrons. 
 d shell can hold y=10 electrons. 

f shell can hold y=14 electrons. 
Draw y/2 boxes.  Example, for d-shell: 
                                                    (10/2=5 boxes) 
 
Under each boxes, label Lz (according to the L of the shell) from maximum to 

minimum.  Example, L=2 for d shell: 
 
 
      
 
Hund’s rule #1 (how to fill up the boxes):   
Always fill up boxes one by one from left to right.  Do not double occupy the 

boxes until the shell is half full.  Start to double occupy the boxes after the shell is half 
full, start from left to right again. 
 

Hund’s rule #2 (how to calculate L, S, and J): 
 S=ΣSz, L=ΣLz, J=|L-S| if shell is less than half full or half full, and J=L+S if shell 
is more than hall full or half full. 
  
Esample 1:   
 
7 electrons in d-shell 
 
 
 
 
L=ΣLz = +2+1+0-1-2+2+1 =3   (or F) 
S=ΣSz = 1/2×5-1/2×2=3/2  (2S+1=4) 
J=L+S =9/2 
Ground level of the atom:  4F9/2 
 
6. There are 2j+1 sub-levels with Jz = -J, -J+1,…,-1,0,1,…,J-1, J.  If we define the 
energy for Jz =0 as 0, then the energy of each of this state is given by 

   Lz:      +2    +1    0    -1    -2 

   Lz:      +2    +1    0    -1    -2 
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 The relative population in level Jz can be calculated as: 
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Define Brillouin function BJ(x): 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have 
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C is the Curie constant, 

7. J, S and J can be estimated from Hund’s rule.  After J is estimated, g can be 
calculated with the Lande equation and the p (effective Bohr magnetron number) is 
known.  The estimated value can be compared with experimental value.  Notes: 
 
(i) Hund’s rule works well for most rare earth (4f electrons), and the calculated p is 
very close to the measured value.  In some cases like Er3+ (Europium) and Sm3+ 
(Samarium), energy between the j-multiplets is too small and will cause problem in the 
2nd order perturbation. 
 
(ii) Hund’s rule does not work fine for transition metals (d electrons).  In case of rare 
earth, the 4f electrons are deep inside the ion and well covered by the 5s and 5p shells.  
This is not the case for the transition metals.  The d-electrons are actually extended 
further out and exposed to the fields from the neighbors (crystal field).  This crystal field 
will affect the LS coupling and modify Hund’s rule in calculating J. 
 
(iii) Crystal field will not couple with S, because spin hjas no real space variables in it.  
However, the crystal field potential will couple with L.  It will split the original 
degenerate l-orbtals >> µB.    
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Example of crystal field splitting (p-orbitals): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(iv) Under the crystal field slitting, Lz is not a good quantum number any more.  On 
average over time, <Lz> =0. Therefore, for transition metal, p (with 2 electrons in shell) 
should be calculated as g[s(s+1)]1/2 = 2[s(s+1)]1/2 instead of g[j(j+1)]1/2 , since L does not 
contribute to magnetic properties.  
 
(v) For splitting of all degenerate orbitals, the crystal field cannot be symmetric,  
Very often, if the crystal is high symmetric (e.g. cubic), the ions will displaced 
themselves to produce a non-symmetric crystal potential to quench the angular 
momentum.  This is called Jahn-Teller effect, 
 
Pauli paramagnetism 
 
1. Electron has spin, so free electrons demonstrate paramagnetic property,  This is 
known as Pauli paramagnetism.   
 
2. The effect of Pauli paramagnetism is very small, becayse electrons inside the 
Fermi sphere cannot flip their spins easily when nearly all states are occupied.  Only 
electrons near the Fermi surface can contribute to Pauli paramagnetism.  According to 
Curie Law: 

Percentage of electrons that have the freedom to flip spin =T/TF. 

Pauli paramagnetism is independent of temperature. 
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3. More quantitative treatment: 
 
 When there is no field: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 When an external field B is applied, say, in the ↑ direction, it will lower the 
energy of the ↑ electrons by µB and raise the energy of the ↓ electrons by µB 
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This treatment has ignored the spatial effect of magnetic field.  In fact, the magnetic field 
can modify the electron wave function and produces diamagnetism.  This diamagnetism 
is about 1/3 of the above estimated paramagnetism in magnitude: 
 
 
 
 
 
 
 
 
 
 
Long range magnetic ordering 
 
1. Long range magnetic ordering is due to exchange field BE from neighbors.  In 
other words, we assume an exchange field between neighbors that gives rise to long 
range ordering. 
 
2. Magnetic ordered states has higher symmetry and it occurs only at low 
temperatures when T < Tc.  Tc is the critical temperature of the magnetic transition.   
 
3. Three common types of magnetic ordering:    
 
 
 
 
 
 
 
 
4. It is clear from above schematic drawings that ferromagnetism and 
ferrimagnetism will give rise to spontaneous magnetisation then ordering occurs at T<Tc.  
The antiferromagnetism will not produce any magneisation because of the two opposing 
spin components.  When T>Tc there will be no ordering and the material has to be 
paramagnetic (i.e. the ions should have their own spin at the beginning). 
 Example: Tc for iron (Fe) is 1043K.  Iron is actually ferromagnetic possessing 
ordering and spontaneous magnetisation at room temperature. It is not a magnet because 
of domain formation.  
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Ferromagnetism 
 
1. The exchange field BE is approximated by the average magnetization field M 
within the sample:   
                                    BE =λ M 
where λ is a temperature independent constant.  This is known as the mean field 
approximation.  Note that now the exchange field will become stronger as temperature is 
lowered, because that is what M does according to Curie Law. 
 
2.  When T>Tc – Curie Weiss Law and relationship between λ and Tc: 
 If Ba = applied field and χP= paramagnetic susceptibility.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. When T>Tc- calculation of spontaneous magnetisation: 
 BE is so strong that Ba can be ignored.  i.e., B= Ba + BE  ~ BE.  For simplicity, lwt 
us consider j=1/2 (2 levels), and g=2. 
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At T=Tc, or                     ,  there is no solution because spontaneous magnetization ceased 
to exist. 
At small m,  

This curve y ~ m/t will have no solution with y=m (except at m=0) when 
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 This is consistent with the result we derived from the side T>Tc.             
 
4. Spontaneous magnetization neat Tc:  
 As T → Tc, m is small.  Expansion of tanh x for small x: 

 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the behavior of M is similar to that of ∆ in the case of syuperconductivity at T ~ 
Tc.   
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5.  Low temperature excitations – magnons: 
 
 Consider N spins coupled to their neighbors: 

 U is minimum when all spins are parallel (ground state) at T=0: 
 
 
 
 
 
 
 
 
 If we consider the j-th spin in antiparallel to the others, 

 This will raise the system energy by an amount of 8JS2.  This excitation energy 
will be smaller if we allow this antiparallel spin to be shared by all members of the 
system – formation of magnons.   
 
 Consider the j-th spin in the system: 

      Sj is related to its magnetic moment as  
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Assume Sj is not off aligned with the other spins so that Sj
x, Sj

y << Sj
z.  We can ignor 

second order terms like Sj
xSj

y and approximate Sj
z as S.  The equations of the j-th spin 

can the be written as: 

u, v are constants, amplitude that measure the maximum deviation of the spin.  Substitute 
these trial solutions into the differential equations: 

∴ Sj
x and Sj

y are 90o out of phase with equal amplitude.  i.e.  The spin is precessing 
circularly about the z-axis: 
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Spin dynamics is “quantized” into magnons, each of energy      .  Any spin configuration 
can be expressed as combination of these magnons.            
Dispersion relation of magnons: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Thermal excitations of magnons: 
 We can derive the thermal properties of magnons from the dispersion relationship.  
Similar to the case of phonons, magnons are bosons: 
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“Normal mode” of spin dynamics 
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Ferrimagnetic order 
 
1. Example: 
 Magnetite   
 
 
 
 
 
 At low temperatures: 
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N(0) is much smaller than that by 
considering Fe3O4 as ferromagnetic. 



 
 
 
 
 
 
 
Exchange field on site A: 
 
 
 
Exchange field on site B: 
 
 
 
For ferromagnetic order to occur, λ >> µ, ν: 
 
 
 
 
 
Let the Curie constants of sublattice A and B be CA and CB respectively.  Mean field 
theory, when T>Tc: 
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Antiferromangetism 
 
1. 
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2. Antiferromagnetism is a special case of ferrimagnetism with CA=CB, i.e.  
 
 
 
 
 
 
 
 
 Experimentally,  
 
 
 
3. When T<TN: 
 
 Case 1.  If Ba ⊥ axis of spin 
    Let M = | MA | = | MB | 
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Case 2.  If Ba // axis of spin 
 
There is no change in U.   ∴ χ//(0) = 0  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

)
T
C (     1  

B
1

M2
B

2M    
B

2Msin       

M2
B

                

0MB2 - M4    0
d
dU

: Uminimize To

B2])2 (
2
1-[1 M-   

sinB22 cos M-    

)(90 cosB2)2(180 cos M    

)MM(BMM    

 )MM(B)MM-MM(
2
1-    

fields) exchange are B and B(        )MM(B)MBMB(
2
1-  U

Na

a

a

a

a
2

a
22

a
2

o
a

o2
BAaAB

BAaBAAB

BABAaBBAA

==⋅⋅≈=∴

=⇒

=⇒=

−≈

−=

−⋅−−=

+⋅−⋅=

+⋅−⋅−⋅−=

+⋅−⋅+⋅=

⊥ λλ
φχ

λ
φ

φλ
φ

φφλ

φφλ

φφλ

λ

λλ

M

M

M

vvvvv

vvvvvvv

vvvvvvvvv

MA MB 

Ba 

T 
TN 

χ 

θ 

χ⊥ 

χ// 



4. Antiferromagnetic magnons: 

 From case of ferromagnetism: 
 Now, if lattice A corresponds to even indices (2j) and lattice B to odd indices 
(2j+1), then  S2j

x should have opposite sign with S2j-1
x and S2j+1

x.   Rewriting the equation 
for ferromagnetism: 
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Corresponding equations for lattice B: 
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Domains 
 
1. Spin in a material with long range magnetic ordering (ferromagnetic, 
antiferromagnetic etc.) form domains. 
 
 
 
 
 
 
 
 
 
2. Reason for domain formation: 
 
 
 
 
 
 
 
 
 
 
3. For small field: domain size will change in accordance to the direction of the 
magnetic field.  Change in domain size can be reversible or irreversible. 
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4. For large field: domain magnetization will re-align with the external field. 
 
 
 
 
 
 
 
 
 
 
5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Irreversible boundary displacement and magnetization rotation are the causes of 
hystersis: 
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