
Chapter 4 Point defects and dislocations 
 
I. Lattice impurities and vacancies 
 
1. A point defect in a crystal is (i) the occupancy of a lattice sites by impurity 
atoms/ions or a voids (i.e. vacancy); or (ii) extra atoms/ions not in regular lattice 
positions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Defects modify the properties of a sample from that of a perfect crystal. 
 
3. Defects are unavoidable.  Even if you can prepare the sample with the purest 
materials, vacancy defects will occur because disorder will increase the entropy of the 
system. 
 
4. Historically, point defects in crystals were first considered in ionic crystals, not in 
the much simpler metal crystals.  The reason was that some known properties of ionic 
crystals (e.g. conduction by ion migration at high temperatures) could be understood for 
the first time in terms of point defects, while no special properties of metals (in the 
twenties) were in desperate need of an explanation. 
 
II. Schottky and Frenkel defects 
 
1. Imperfection due to vacancy is also called a Schottky defect.  It is created by 
transferring an atom/ion from the original correct site to the surface of the sample. 
 
2. If Ev = energy to move an atom from its site to the surface.  Probability of finding 
site in vacant is given by 
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Note that if Ev is large, P → 0.  P = ½ if Ev=0 (no difference between occupancy and 
vacancy). 
 
3. If there are N sites and n vacancies in a sample, then P=n/N 

This is the ratio of the vacant sites to occupied sites. 
 
4. At higher temperatures, the number of vacant sites will increase.  The actual 
concentration of vacancies can be higher if the sample is is grown at a higher temperature 
and then cooled suddenly (quench). 
 
5. At low temperatures, n<<N-n, 

 For example, if Ev=1 eV and T =1000K (note that 1K ≡0.08 meV, therefore 
1eV/1000K= 1/0.08=12.5) 

 
6. In ionic crystal, vacancies are formed in pair to maintain local neutrality. 
 
7. If the atom is transferred to an interstitial position instead of surface, the defect is 
known as Frenkel defect. 
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8. If N = number of possible normal lattice sites, N’ = number of possible interstitial 
site.  (N=N’ for most of the cases), and n = number of Frenkel defects.   

III. Diffusion of point defects   
 
1. Frenkel defects is important in explaining conductivity in some ionic salts, like 
many alkali halides.  Electric conductivity in these ionic salts is caused by Frenkel 
defects (i.e. ions), not by electrons.  This can be demonstrated by comparing the transport 
of charge to the transport of mass. 
 
2. More precisely, the conductivity in an alkali halide can be modeled by the 
diffusion of Frenkel defects through the crystal.  The current is driven by maintaining a 
concentration gradient and the diffusion current density follows the Fick’s Law: 
 
 
JN is the current density (ions per area per time) and N is the concentration of the current 
carrying ions (ions per volume) and hence the diffusion current has a unit of area per time 
 
3. To diffuse, an ion must overcome the potential barrier presented by its neighbor.  
The barrier height is called the activation energy E (or more accurately we can define 
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activation energy E+ for the positive ion and E- for the negative ions).  We should 
distinguish the difference between the energy of defect formation EI (energy to produce 
one defect ion) and the activation energy E (energy to make the ions to move). 
 
4. There are two mechanisms to make the ions to overcome the potential barrier:  (i) 
by thermal excitation, and (ii) by quantum tunneling.  In general quantum tunneling is 
important only for light ions, so we will consider only the thermal excitation here.  For 
thermal excitation, if the ion makes ν passes (per unit time) at the barrier, there will be a 
probability of exp(-E/kBT) in surmounting the barrier in each try.    Hence, a fraction of  
p=ν exp(-E/kBT) ions will be excited to move in every second. 
 
5. Diffusion constant is a function of temperature.  Consider two planes separated by 
a lattice constant a, and let S (ions per area) be the ion concentration at the planes so that 
S=Na.  Both N and S are function of the plane position: 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

6. The drifting (diffusion) velocity of the ions is proportional to the applied electric 
field E.  The proportional constant is known as the mobility of the ions: 
                                                     v = µ E 

  Since j = nqv where q is the charge of the carrier.  ∴ j = µnqE.  Ohm’s Law ⇒ j 
= σE where σ is the conductivity.   

                                            ∴  σ = µnq 
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According to Drude’s model,  
                                                          σ=nq2τ/m 
where τ is the relaxation time.  ∴ µnq = nq2τ/m ⇒ τ=mµ/q 

µ is related to D by the Einstein’s relation.  Assuming Maxwell-Boltzman distribution, 
vrms

2 = 3kBT/m and from statistical mechanics: 

                                      D= vrms
2τ/3 ⇒ D= kBTτ/m  

                                                          ⇒ D= kBTµ/q    (Einstein relation) 

 

7. Since σ depends on D, and D depends on T, so now we can figure out how σ 
depends on T: 

  D= kBTµ/q    ⇒ D= kBTσ/nq2     
                                                       ⇒ σ=Dnq2/ kBT    

                              ⇒ σ= Tk
E -
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IV. Color Centers 

1. Color centers are imperfections in crystals that cause color (defects that cause 
color by absorption of light). Electrons in defect region only absorb light at certain range 
of wavelength. The color seen is due to lights not absorbed.  
2. This phenomenon is common in many transparent insulators (example: diamond).  
Many metal oxides fall in this category.  

3. Examples of color centers: 
(i) A diamond with C vacancies (missing carbon atoms) absorbs light, and these 
centers give green color.  
 
 
 
 
(ii) Replacement of Al3+ for Si4+ in quartz gives rise to the color of smoky quartz.  
(iii) A ruby (Al2O3) may contain < 1% Cr and it will look pink or red, but the same 
material without Cr will be completely colorless.  

3. There are different mechanisms for the light absorption. 
4. F center has been identified by electron spin resonance as an electron bound at a 
negative ion vacancy.  When excess alkali atoms are added to an alkali halide crystal, a 
corresponding number of negative vacancies are created.  In other words, there is a 
surplus of electrons.  These electrons will migrate and bound to a vacant negative ion 



site.  The distribution of the excess electron is largely on the positive metal ions adjacent 
to the vacant site.  Optical absorption arises from an electric dipole transition to a bound 
excited state of the center.  F center is the simplest trapped-electron center in alkali halide 
crystals.  Absorption wavelength increases (~from 4000 angstrom to 6000 angstrom) with 
the size of the alkali ion (from Li to Cs) because the electron at the vacant site are less 
bound to the larger alkali ions. 
 
5. Other centers. 
 FA center:  One of the nearest positive neighbors which bind an F center is 
replaced with another type of alkali ion. 
 M center:  An M center consists of two adjacent F centers. 
 R center:  An R center consists of three adjacent F centers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


