
Chapter 6.  Review of phonons and thermal properties 
 
I. Phonons 
 
1. The lattice will vibrate more as temperature is raised.  This is equivalent to say 
more phonons are produced by the higher temperature. 
 
2. Consider “harmonic” oscillation of a lattice in one direction: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. The displacement of the s-th plane is  us.  For harmonic wave, it is given as 

 k is the wave vector and ω is the frequency. 
 Note that us+1 = eikaus. 
 
4. If C is the spring constant, us is the solution of the equation of motion: 

5. As a result, k and ω are not independent of each other.  They follow the 
dispersion relation: 

 This dispersion relationship has to be periodic in the reciprocal space, i.e., 
   ω(k+2nπ/a) = ω(k) 
 The solution (or normal mode or state) is determined by the value of k.  k can be 
considered as the “name” of the solution. 
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6, For small k, 

7. Group velocity of the waves is given by 

  
For small k, or long wavelength,  

 
 For  large k, or short wavelength,  vg ≈ 0. 
 
9. Zone boundary: 
 Consider two states k and k+2π/a, we know from above discussion that these two 
states have the same ω (i.e. energy) and they represent exactly the same solution since 

Therefore any state out side the first Brillouin zone (i.e. k<-π/a or k>π/a) is redundant 
because it represent the same state within the first Brillouin zone. 
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Hence for phonon, we need only to focus at the first Brillouin zone: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. In solving the equations of motion, we often introduce the periodic boundary 
condition: 
 If there are Nx planes along the x direction, then we require 

Periodic boundary condition is introduced so that it makes more physical sense to prevent 
reflection at the surfaces (though not necessary): 
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9. Total number of state = Nx. Size per state in reciprocal space ∆kx= 2π/Nxa = 
2π/Lx where Lx is the sample length along the x-direction.  This correspond to the 
uncertainty principle ∆x∆k=2π.  There are a total of Nx equally spaces states in the first 
Brillouing zone: 
 
 
 
 
 
 
 
 
 
 
 
 
 For the same material (i.e. a), note that the large the sample size (L), the number 
of states N will increase.  The zone size (2π/a) will remain the same in and the states will 
be more compact (2π/L) together. 
 
8. The states at the origin (mostly at the center of the Brillouin zone) have the 
smallest k and the k=0 state corresponds to an infinite long wavelength (i.e. dc).  The 
next smallest k is 2π/L, this correspond to a wavelength of L.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The states at the zone boundary have the largest k and shortest wavelengths.  The 
largest k is π/a and this corresponds to a wavelength of 2a.  The next largest k is π/a-
2π/L, this corresponds to a wavelength of 2aL/(L-2a) ≈2a.  Note the approximation.  It is 
not necessary for the vibrational mode to “match” with the lattice poitns. 
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10. For three dimensional case, there are extra degree of freedom for the vibration.  
As a result, there will be three phonon branches (one for longitudinal vibration and two 
for transverse vibration).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 We can also think of a particular “branch” as a scalar field in the reciprocal space 
-- each k has a number attached to it representing the value of ω.  Different states with 
the same value of ω can be joined together with a contour (a surface), or constant ω 
surface. 
 
11. For each of the branch in the three dimension case: 

 
13. If the lattice has basis, there will be more degree of freedom.  The vibration of  

the lattice as discussed above causes the acoustic branch.  The vibration of the 
atoms within a basis causes the optical branch. 
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 Optical branches are relative flat, and at a higher energy than the acoustic 
branches.  There are always three acoustic branches, one for each dimension.  If there are 
N atoms in the basis, there will be 3(N-1) optical branches, (N-1) for each dimension. 
 
II. Meaning of phonons 
 
1. For simplicity, consider one dimension with only acoustic branches.  We know 
there are N solutions for the vibration of the s-th plane: 

 
2. These solution form a complete orthonormal sets.  In other words, no matter how 
complicated is the vibration of the s-th plane over time (of period T), we can always 
express it as a linear combination of normal mode by Fourier transformation. 

3. Note that                                                    has group velocity and can be considered as the 
“plane wave” of a particle.  This particle is a phonon.  Ai(ω) is proportional to the number 
of phonons with frequency ωi. 
 
4. Energy of a phonon is given by            .              
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III. Density of states 
 
1. Density of states is defined as the number of states available per unit volume per 
unit energy.   
 
2. Density of states can be measured experimentally. 
 
3. Density of state can also be considered as a mathematical devices to calculate 
physical quantities that have to be summed over all reciprocal lattice points. 
 
 
 
4. k-space: 
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IV. Specific heat of a lattice 
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V. Specific heat of elections 
 
 
 
VI. Thermal conductivity of lattice 
 
 
VII. Boltzmann equation in electric fields and temperature gradients 
 
1. Define distribution function f(r,k,t) as the probability density such that 
f(r,k,t)d3rd3k/4π3 is the probability for an electron to be found in the volume element 
d3rd3k around point (r,k) in the phase space. 
 At thermodynamic equilibrium, f(r,k,t) = f0(r,k,).  f0(r,k,) is simply the local 
Fermi-Dirac distribution 
 
 
 
2. According to semi-classical theory, an electron will evolve from point (r,k,) to 

)dt)/F(k ,dtv(r k h
vv

v ++ at time t+dt.  Vk and F are given by  
 
 
 
 
3. Liouville theorem state that the volume in phase space is conserved by the semi-
classical equation of motion.  In other words, f(r,k,t) = constant if there is no collision. 
 
 
 
 
 
 
3. If there is collision, f is not conserved any more. 
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 This is the Boltzmann transport equation.  It is clear that this approach will fail to 
work in scale dimension less than the de Broglie wavelength.  
 

4. Linear response provides an estimation on 
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τ is the relaxation time, the average time between collisions.  Boltzmann equation 
becomes: 
 
 
 
Note: 
 
 If the external force F is suddenly removed in a homogeneous system (∂f/∂r=0),  
 
 
 
 
 
 
The distribution function moves to its equilibrium value f0 with time constant τ. 
 
5. Transport can occur either in form of electron current density J or energy flux 
density U:   
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6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. Boltzmann equation in stationary electric field and temperature gradient: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8. From this we can calculate the current and energy flux density: 
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Integrate over constant energy surface, 
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Note that σ(EF) is the standard conductivity of a metal. 
 
Integration can be done by Sommerfeld expansion.  For any function G(E): 
 

 
 
 
With G(E)=Enσ(E) we have  
 
 
 
 

 
 
 
 
 
 

 
 
With this, J and U can be rewritten as follow: 
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S(T) is known as the thermoelectric power or Seeback coefficient. 
 
9.  S(T) can be either positive or negative, depends on the sign of dσ/dE at the Fermi 
energy µ.  If σ(E) = CEP (p=3/2 for free electron gas),  
 
 
 
 
 
 
    If T ~ 300K, TF~100T, kB/e = 0.48×10-4 V/K we expect a thermoelectric power of the 
order of 10-6 V/K. 
 
10. 
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Ke is called the electron thermal conductivity. 
 
11. Summary: 
 
 

 
 
 

 
 
VIII. Thermal conductivity of electrons 
 
1. Boltzmann equation: 
 
 
 
 
 
 
2. Consider a metal in the presence of a uniform temperature gradient ∇T and in 
open circuit condition, so that J=0.  Above equation reduces to  
 
 
 
 Note that the energy flows in direction opposite to ∇T. 
 
3.  Wiedemann-Franz law:  The ratio of electron thermal conductivity to electrical 
conductivity is proportional to T. 
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4. Note that Lorentz number is a universal number, independent from the material, 
temperature and relaxation time.  Its justification is based on the transport equations.  The 
most vulnerable point of the transport equations is the linear response approximation of 
the collision time, which gives rise to the relaxation time.  The approximation is justified 
above the Debye temperature, where the electron-phonon scattering is the dominant 
process.  It is also justified at low temperatures, where impurity scattering is dominant.  
In both temperature regimes, the ratio ke/kσ0 is approximately the same for all metals,  At 
intermediate temperatures, significant deviations may occur. 
 
IX.  Seeback or thermocouple effect 
 
1. Similar to the conditions in the previous discussion on thermal conductivity, 
consider a metal in the presence of a uniform temperature gradient ∇T and in open circuit 
condition, so that J=0.   
 
2. Instead of paying attention to the energy flux flow U, we will investigate the 
electric field E set up under the condition.  Boltzmann equation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Consider the following circuit with two junctions maintained at two different 
temperatures T1 and T2, hence setting up a temperature gradient along metal B. 
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+4. Assume P0 and P3 are kept at the same temperature so that T0 =  T3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. If SA(T) of metal A is known, SB(T) can be measured from V3-V1 (potential 
difference between points P3 and P1) by varying T2 with respect to T1.  Alternatively, if 
both SA(T) and SB(T) are known, T2 (with respect to T1) can be measured from V3-V1. 
  
X. Thompson effect 
 
1. If now there is an electric current flow (in the presence of a temperature gradient), 
heat is released or absorbed because of the mismatch in J and U. 
 
2. In contrary to Joule heating, heat can be released or absorbed depending on the 
direction of current flow.   
 
3. If a current J is flowing from point A at temperature TA to point B TB (=TA +dT). 
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Assume constant temperature when x≤xA and x ≥ xA so that ∇T=0 at points A and B (but 
not for points within the element). 
 
Boltzmann equation: 
 
 
 
 
 
 
4. If dU is the energy accumulates in time dT, 
 
 
 
 
5. First law of thermodynamics: 
                    dU = dQ – dW 
 dW is the work done by the current and it is given by: 
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XI.  Peltier effect 
 
1. Thompson effect can be used for cooling.  This is not practical because dS/dT (of 
KThompson) is too small.  ∆S can be large if it is the difference between two different 
materials (i.e. across a junction).  Thompson effect across a junction is called the Peltier 
effect.   
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2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
For simplicity, assume the temperature is constant  
 
 
 
 
 
 
 
 
 
3. For materials to be practical usable in Peltier junction, they need to have large 
Peltier coefficient Π (or thermoelectric power S), but a low thermal conductivity Ke. 
 
XII. Drift and diffusion current 
 
1. We now consider the current due to the electric field (i.e. no temperature gradient, 
∇T=0 ): 
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vvv
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“ohmic term” described by the Drude model. 
 

3. The second term  
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∇= is the diffusion current. 
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4. Free electron model: 
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5. For non-degenerate free electron gas that follows Boltzmann distribution (which 
is not correct), 
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