
Chapter 7.  Electrons in a solid 
 
I. One electron approximation 
 
1. Total (non-relativistic) Hamiltonian of a lattice: 

 
 

 
 

 
 

 
2. Large difference between electron and nuclear masses ⇒ Nuclei kinetic energy 
can be neglected. 
 
3. If the nuclei have a fixed configuration, the nucleus-nucleus is a constant term and 
it can be disregard if we are considering just the electronic states. 
 
4. Hence the many-body Hamiltonian for a system of N interacting electrons in the 
presence of nuclei can be written in the form 

 
 

 
 

 
 

 
   The goal is to find the solution of the Eigenvalue problem 
        HeΨ(r1σ1, r2σ2,…. ,rNσN)= EΨ(r1σ1, r2σ2,…. ,rNσN) 
 
5, Hartree approximation 1: 
 The total wave function Ψ is a product of orthonormalized one-electron wave 
functions ψ: 

Ψ(r1σ1, r2σ2,…. ,rNσN)= ψ1(r1σ1)ψ2(r2σ2)… ψN(rNσN) 
 The subscript i in riσi indexes the electrons.  The subscript i in ψi indexes the wave 
function.  ψ is the product of two parts – spatial ϕ(r) and spin χ(σ) so that ψ( rσ)= 
ϕ(r)χ(σ).  The problem is now to determine ψ(rσ). 
 
6. The electron charge density is given by 

 The summation is over all electrons. 
 
7. Hartree approximation 2: 
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 The Coulomb potential experienced by an election due to other electrons is 
approximated by the Hartree potential Vcoul, which is actually the potential due to all 
electrons.    It is further assumed that all electrons experience the same potential.  In this 
way, the multi-electrons problem is reduced to one electron problem. 

 
From these we have the Hartree equation: 

8. The solution is a set of wave function {ψ1,ψ2… ψN}determined by self-
consistency: 
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Is the difference between the 
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The set of wave functions is 
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calculate εi. 



9. Problem of the Hartree approximation:  the wave functions do not take into the 
fact that electrons are Fermion and hence the wave function ψ(rσ) should be anti-
symmetric (i.e. Pauli exclusion principle).   
 
II. Hartree-Fock equation 
 
1.  If ψ1(r1σ1)ψ2(r2σ2)… ψN(rNσN) is a solution of HeΨ= EΨ, then so is any 
permutation like  ψ1(rNσN)ψ2(r2σ2)… ψN(r1σ1) and any linear combination of these 
permutations.   
 
2. Electron is a Fermion, exchanging any two electrons will change sign of the wave 
function, i.e. Ψ(r1σ1, r2σ2,…. ,rNσN) = - Ψ(rNσN, r2σ2,…. ,r1σ1) and so on.  
 
3. Furthermore, no two electrons can occupy the same state.  For example, 
ψ1(r1σ1)ψ2(r2σ2)… ψ1(rNσN) =0 
 
4. The Slater determinant constructed from ψ1(rNσN), ψ2(r2σ2), … ψN(r1σ1) 
processes all of the above properties: 
 
 
 
 
 
 
 
 
 
 
 
5. The Hamiltonian matrix element for the total wave function can be calculated for 
the Slater determinant: 
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The electron-electron repulsive energy on the antisymmetric wave function is always 
lower than the repulsive energy on the “simple” wave function used in the Hartree 
equation.   
 
6. Hartree-Fock equation can be obtained by variational principle in minimizing 
<Ψ|He|Ψ> under the constraint that <ψi|ψj>=δij.    Apply Lagrange multipliers εij: 
Define Operators: 
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Define operators: 
 
 
 
 
 

 
 
Above equation reduces to a single electron equation: 
 

 
 

 
 
Diagonalize ε so that εij = εiδij, we have the Hartree-Fock equation: 
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III. Free electron  
 
1. Screening of nuclei potential by inner electrons  ⇒ Vnucl = 0. 
 
2. Low electron density, screening by free electrons (Thomas-Fermi screening) and 
the rareness of electron-electron scattering ⇒ VCoul = Vexch =0. 
 
3. For free electrons: 
 
 
 
 
4. For free electrons: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Determination of Fermi energy EF: 
 
 
 
 
 
 Dispersion relation: 
 
 
 
 Density of state: 
 
 
 
 
 
 Temperature effect: 
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 Note that µ(0)=EF. 
 
 
IV. Central equation 
 
1. A crystal possesses lattice symmetry, and hence there must be some potential for 
the electron with the same periodicity, no matter how small is the potential (in case of 
nearly free electron).  The one electron Schroedinger equation: 

where V is the periodic potential. 
 
2. Bloch’s theorem. 
 The solution of the one electron Schroedinger equation is always in the form: 

where uk(r) is a periodic function that has the same periodicity as the lattice: 
     uk(r+R) = uk(r) 
Note that ψk(r) does not have the same periodicity as the lattice because ψk(r)≠ ψk(r+R).  
Instead,  

This equation is considered as Bloch’s theorem also (in another form). 
 
3. Because of the periodicity, eiK⋅r forms a complete orthogonal set of functions.  
Any function with the same periodicity as the lattice can be expressed as a linear 
combination of eiK⋅r: 

 
4. The one electron Schroedinger equation can be reduced to the Central equation: 

 Central equation relates C(k) and C(k+K) for all reciprocal vectors K.  There is 
one central equation for each allowed value of k.  The dispersion relation of electron can 
be obtained by requiring the determinant of this set of linear equations to be zero (for a 
non-trivial solution). 
 
5.  ψk(r) in terms of C(k): 
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 Compare with Bloch’s theorem, we know that  
 

 
6. Now look at the Central equation, there is one equation for each value of k (-
∞<k<∞).  However, only k, k+K, k+K’, k+K”,….are related together within the same 
group of equation.  For the sake of discussion, let us assume there are N real space lattice 
points and M reciprocal space lattice points (N, M →∞).  There is a total number of N×M 
central equations for the N×M unknown C(k).  However, since only only k, k+K, k+K’, 
k+K”,… (M of them) will appear in the same central equation (M of them), hence the 
N×M central linear equation system is actually block diagonalized into M×M blocks and 
there are N of these blocks.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. This block diagonization allows us (and more reasonable) to present the 
dispersion relationship of single electron in the reduced zone scheme:  instead of using 
the N×M k (-∞<k<∞) values to index the solution (extended zone scheme), we can use k 
(limited to the first Brillouin zone, N of them) and K (M of them) to index the solution 
(reduced zone scheme).  If is more often to use n (=1,2, ….M) instead of K in labeling the 
solution.  
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V. Nearly free electron model 
 
1. One dimensional free electrons “superimposed” on the reciprocal lattice space: 
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2. If there is no potential, the electron will be perfectly free, but there will be no 
periodicity either.  Hence, for the existence of lattice periodicity, there must be some 
potential, no matter how weak, possessing the same periodicity as the lattice. 
 
3. If the potential is very weak, the dispersion relationship for the single electron 
should be very similar to that of free electron and the wave function of the electron 
should look like the plane wave eik⋅r. 
 
4. In reduced zone scheme, degenerate states will occur (see figures above).  Bragg’s 
scattering will remove the degeneracy and create band gap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 For this reason, it is not practical to label the band with reciprocal vector K. 
 
5. Sketching Fermi surfaces 
 (i) Construct enough Brillouin zone to contain the Fermi sphere (i.e. 
construction in extended zone scheme). 
 (ii) Draw the Fermi sphere to hold all electrons 
 
 
 
 
 
 (iii) Rearrange different zone region into one piece (reduced zone scheme) ⇒ 
possible to have several Fermi surfaces. 
 (iv) “Round off” corners.  By crystal symmetry, Fermi surface always 
perpendicular to zone boundary. 
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VI. Tight binding model 
 
1. Also known as Linear Combination of Atomic Orbital (LACO). 
 
2. This model starts from isolated atoms and atoms can “share” electrons by overlap 
of atomic orbital.  Model works fine for the d-bands of transition metals and also valance 
bands of insulators. 
 
3. Atomic orbital: 
 s orbital (l=0 with mz=0), can hold two electrons.   
 
 
 
 
 
 
 
  
 Group notation:  a1g (a=non-degenerate, g= inversion symmetry) 
 
 p orbital (l=1 with mz=0, ±1 ), can hold 6 electrons.   
 
 
 
 
 
 
 
 
 
\ Group notation: t1u (t=triple degeneracies) 
 
 d orbital  (l=2 with mz=0, ±1, ±2), can hold 10 electrons.   
 
 
 
 
 
 
 
 
 
 
 
 Group notation: t2g (t=triple degeneracies) 

px 

dxy 

py pz 

dxz 

dxz 



 
 
 
 
 
 
 
 
 
 Group notation: eg (e=double degeneracies) 
 
4. Mixint of different orbital ⇒ Hybridization.  E.g. s-d hybridization.  
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 where nn=nearest neighbors and ρ is the vector pointing to the nearest neighbor 
vector. 
 For example, there are six nearest neighbors for simple cubic. 

a)k cos  ak cos ak (cos2- -         
]eeeee[e - -  E 

a).(0,0, a,0),(0, a,0,0),(  

zyx

aikaik-aikaik-aikaik-
k

zzyyxx

++=

+++++=∴

±±±=

γα
γα

ρ
v  

 
6. Band width: 
 
 
 
 
 
 
 
 
 
 
 
 Narrow band with small bandwidth ⇔ Higher effective mass m* ⇔ Lower 
mobility. 
 A material with a very narrow bandwidth is an insulator (Mott insulator).  A 
metal-insulator (Mott) transition by adjusting the bandwidth is called Mott transition.  
One way to achieve Mott transition is to increase the atomic separation a and reduce the 
overlap of atomic orbitals. 
 
VII. Semiclassical model 
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1. A single particle in k-space (occupying a unique state) will produce a wave 
u(r)eik⋅r in real space.  Similarly, a single particle in real space is a wave in k-space.  In 
semi-classical model, a compromise is made so that the single electron wave function is 
“Gaussian” like in both reap space and k-space: 
 
 
 
 
 
 
 
 
 
 
 
In this way the electron is “particle like” in both real space and k-space.  Physical 
quantities like position and velocity can be measured by the mean of the Gaussian 
functions. 
 
2. Equations of motion: 
 
 
  
  
 
For example, one-dimensional free electrons case, 
 
 
 
In the presence of electric and magnetic field, 
 
 
 
3. Effective mass of an electron at state k: 
 The effective mass is actually a tensor [m*(k)] with its inverse defined as  
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Notes: 
 (i) There are two signs for the mass tensor.  Positive sign is for electron and 
negative sign is for hole. 
 (ii) Near the extremums of the energy band, m-1 is a measure of  the parabolic 
curvature. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.  
 
 
 
  
 
 
 
 
 
 
 
 
 
5. Semiclassical model does not allow interband transition.  i.e., n remains constant 
for a particular electron. 
 
6. The equations of motion apply only to an electron in the time between two 
collisions.  Immediately after a collision, the electron will be scattered in random 
direction (Drude model) and the equations of motion will be followed again until the next 
collision.   
 
7. Effect of external force: 
 
 If there is no collision (i.e. no resistance) 
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k

)kE( 1  v   E  1v   

ijij

jiji

jij
1-

i

i

ii

2

i
i

i
ik

&v
v

&&vh&v
v

&h&

&h&

v

h
&

v

hh

v
v

=

=⇒==

=⇒

=⇒

∂
∂

∂∂
∂

=⇒

=
∂
∂

=⇒∇=

∑

k 

E 

k 

E 

Larger m-1 ⇒ smaller m Smaller m-1 ⇒ larger m 
∴ narrow band ⇒ larger m 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Fermi sphere will translate across the d-space: 
 
 
 
 
 
  
 Un-free electron 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 No interband transition  ⇒ the Fermi surface will “oscillate” and remain in the 
first Brillouin zone.  Over time, it will “disappear” at the zone boundary but reappear 
immediately at the opposite zone boundary as shown in the above figure.  
 
 If there is collision (as in all real cases): 
 
 The Fermi surface will remain stationary in k-space.  On average, the sphere has 
only a time of τ (relaxation time) to translate across the k-space. 

Free electron
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  The equation of motion has to be modified accordingly:  
 
 
 
VIII. Electrons in magnetic field 
 
1. Consider an electron moving in a constant magnetic field without electric field. 
 
2. In real space, the electron moves either in circle perpendicular to the B field, or 
spiral along the B field. 
 
 
 
 
 
 
 
  
 If the mass tensor is diagonalized, with equal mass in all directions,  
 
 
 
 
 
 
 
 
 
 
 ωc is the frequency of the circular trajectory.  Note that the trajectory is possible 
only between collisions. 
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3. In k-space, equation of motion: 
 
 
 
 
 
 
 
 
 The trajectory in k-space is a path on equal energy surface and perpendicular to 
the B field.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the trajectory does not need to be closed. 
 
4. If r⊥ is component of r perpendicular to B,  
 
 
 
  
It the particle is tracing closed orbit in both real space (with an area Ar) and k-space (with 
an area Ak):   
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IX. Resistivity 
 
1. Electrical resistivity is caused by inelastic collisions of electrons.  Drude model 
assumes <v>=0 immediately after a collision and we have: 
  
 
 
 
2. τ is the relaxation time, equals to the average time duration between two 
collisions.  Hence, if l is the mean free path, 
                                               l = vFτ 
 For typical materials,  vF= 108cm/s = 106m/s.  If l=1000 Angstroms = 10-7m then  
τ=10-7/106 = 10-13 s. 
 
3. Origin of electrical resistivity: 
       (i)  Collision with phonon -- dominant at high temperatures (e.g. room temperature). 
       (ii)  impurity --  dominant at low temperatures. 
       (iii) lattice imperfection  --  dominant at low temperatures. 
       (iv)  sample boundary -- dominant at low temperatures. 
       If τL is the relaxation time for phonon scattering, and τi is the relaxation time for 
impurities and defects etc. 
 
 
4. Mathiessen’s rule: 
 Separate sources of resistivity, such as phonon and impurities, sum linearly to 
produce the total resistivity of a sample just as resistors in a series sum linearly: 
 
 
 
5. In most cases, 
 
 
 
 ρL decreases with temperature while ρi remains constant, 
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6. Residual resistiviy ratio (RRR) is defined as: 
 
 
  

RRR can be used as an indication on the purity of the sample: 
 
 
 
 For a purer sample, ρi is smaller and hence RRR is greater.  RRR can be 106 for 
some very pure metal, but ~1 for some alloys. 
 
7. Mathiessen’s rule ⇒ Resistivity ∝ impurity sample.  If ni= impurity 
concentration,   
 
 
 
As a rough rule: 
 
 
 
For example: 
 For example, ρ(300K) for a copper sample is 1.7×10-6 µΩ-cm.  If RRR=1000, 
then ρ(0K) ~1.7×10-3 µΩ-cm.   
  
 
 
8. Surface resistance, or more appropriately square or sheet resistance Rs.  This is the 
resistance measured between opposite edges of a square sheet: 
 
 
 
 
 
 

  
Rs is independent of the dimension of the sheet.  Surface resistance is commonly used in 
semiconductor and thin film measurements. 
 
X. Hall effect 
1. Consider a constant homogeneous field B applied perpendicular to the sample 
plane: 
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2. Hall conductivity σH is defined as jx= σH Ey.  The more common Hall resistivity is 
RH = 1/ σH = Ey / jx. 

 
 

xxcy

xcy

xcy

xxy

zz

zy

c

zz

xcyy

ycxx

E
m

eB  E E     

0  E
m
e-E

m
e-         

0vE
m
e-       and   

E
m
e- v 0 v

0  E    0  v

 0 v v x̂jj Also,

frequencycyclotron   
m
eB   where

E
m
e-v

vE
m
e-v

vE
m
e-v

:casesteady for  0   v
dt
d

   v 1
dt
dm  B  veEe

τ
−=τω−=⇒

=⎟
⎠
⎞

⎜
⎝
⎛ τ
τω−

τ
∴

=τω−
τ

τ
=⇒=

=⇒=

==⇒=

==ω

τ
=

τω−
τ

=

τω−
τ

=

=

⎟
⎠
⎞

⎜
⎝
⎛

τ
+=×−−

v

v

vvvv

B 

x 

y 
z 

 x̂ j  j =
v

ne
B-   

ne
m

m
eB   

E
m

neEj But

j
E

m
eB 

j
E

  

2H

x

2

x

xy
H

=
τ

τ
−=ρ∴

τ
=σ=

τ
−==ρ



3. Hall coefficient RH is defined as  

 
 RH depends only on the carrier density n. RH can be positive or negative, depends 
on the sign of the carrier charge. 
 
4. Hall effect is important in the determination of carrier density, and also the sign of 
the charges.  Note that many metals have positive (hole) carrier charge. 
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