
Chapter 8.  Semiconductors 
 
I. Maxima and minima of energy band 
 
1. We can always approximate the maxima and minima of an energy band by 
parabolic surfaces: 
 
 
 
 
 
 
 
2. Electrons behave differently when they are at the energy band maxima and 
minima: 
  
(i) At the band minima   
 ∇kE points away from the minima.     
 In k-space 
                 
 
 
 
 
 
 
 
 
 
  
(i) At the band maxima   
 ∇kE points towards to the maxima.     
 In k-space 
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Note that orbit can be open, but the argument is the same. 
 
 
 
 
 
 
 
 
 
 
 
3. Note that the orbit in real space is the same in both cases.  The difference is in the 
sign of dk/dt, or dv/dt which corresponds to the “centripetal acceleration” in the case of 
circular orbits.   
 
4. A band is filled from low energy to high energy.  In semiconductors, only two 
cases are important: nearly empty band and nearly full band. 
 
 
 
 
 
 
 
 
II. Metal, insulator, and semiconductor 
  
1. The argument presented here is based on the inverse symmetry of a crystal: 
  ∇kE = -∇-kE   ⇒   v(k) = -v(-k) 
 
2. Current due to electron at state k is canceled by the current due to electron at state 
–k, j(k) = -j(-k). 
 
3. A full band cannot conduct electricity. A full band is always a full band no matter 
what the external fields are. 
 
4. An empty band cannot conduct electricity because it does not have charge carrier. 
An empty band is always an empty band no matter what the external fields are. 
 
5. Only a partially filled band can conduct electricity.  A partially filled band in an 
electric field: 
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 It can be see that the occupied states are not “balance” because of the shifting of 
Fermi sphere (by an amount of F/τ) under an external field.  This unbalance causes the 
current flow. 
 
6. Now we can define the difference between insulator and conductor: 
 All energy bands in an insulator are either full or empty.    
 A conductor (metal) must have at least one partially filled band. 
 
7. A material with odd number of valance electrons must be a conductor, because an 
energy band can hold even number (spin) of electrons.  Note that for even number of 
valance electrons, it can be wither an insulator or conductor (the electrons can occupy 
two energy bands instead of one). 
 
8. A partially filled band is called a conduction band.  The highest full band is called 
the valance band.   
 
9. The band gap Eg is the difference in energy between the lowest point of the 
conduction band and the highest point of the valance band.  The lowest point in the 
conduction band is called the conduction band edge, and the highest point in the valance 
band is called the valance band edge. 
 
10. A semiconductor is an insulator, but with a small bandgap. 
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III. Basics of semiconductors 
 
1. For semiconductor, Eg ≤ kBTroom.  It conducts slightly by thermal excitations.  
However it will become an insulator at low temperatures. 
 
 
 
 
 
 
 
 
 
 
 
 
2.  Examples. Eg for Si = 1.11 eV, Ge = 0.66eV, GaAs =1.43eV. 
 
3. Bandgap can be measured by optical absorption method. 
 For photon, 
 1 eV = 2.4 × 1014 Hz = 1.25 µm  (Infrared region) 
 
 wavevector kphoton used:   

 Photon can detect only a very small region (10-4) near the zone center.  
 Case 1.  Direct gap semiconductor  
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Selection rules: 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Case 2.   Indirect gap semiconductor 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two types of absorption can occur.   
(i) Direction absorption, as in the case of direct gap. 
(ii) Indirect absorption: 

(a) The electron is “pumped up” to an energy near the conduction band edge 
(indirect) by the photon. 

(b) It is then transferred to kc with a low energy phonon.  In general, energy 
of phonon is quite small.   

   v ~ 103 m/s  and |K| ~ 2π/a ~ 1010 m-1.    
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  ∴ ωzone boundary ~ 1013 s-1.   
  ∴         W of phonon at zone boundart ~ 10 meV. 
  
 Selection rule for indirect process: 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IV. Electrons and holes 
 
1. It is an experimental fact from Hall effect measurement that charge carrier can be 
either positive or negative.  Negative charge carrier is a result of “nearly empty band” and 
positive carrier is a result of “nearly full band”. 
 
2. Nearly empty band :   Nearly full band: 
 
 
 
 
 
3. These two different bands in an electric field E:   
 Nearly empty band :   Nearly full band: 
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Electrons in both cases will shift opposite to E by an amount of E/τ. 
 
3. These two different bands in an magnetic field B:   
 
 
 
 
 
 
 
  
 
 
4. Effects on other physical quantities: 
 Note that  
 
 
 Nearly empty band: 
 
 
 
 
 
 
 
 
 
 Nearly full band:  
 
 
 
 
 
 
 
 
 
5. To establish a consistent picture, invent fictitious particle hole and fictitious hole 
band:  Each vacant state in the original electron band corresponds to a hole occupying a 
state in the hole band.   A nearly full electron band corresponds to a nearly empty hole 
band.   
  
6. Let us now consider k and E.  Σk = 0 for a full electron band.  If there is a single 
vacant at kvac and energy Evac in a full electron band, Σk for the full band will be - kvac 
and the total energy of the full band will be decreased by Evac.increases as holes are 
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introduced.  Therefore the fictitious hole band has to be “turn up side down” as the 
original nearly full electron band, and khole = -kvac. 
 
 
 
 
 
 
 
 
 
 
 
 
 
7. Since  
 
 
 
 or we can simply right m*hole = -m*vac. 
 
8. Since 
 
 
 
9.   
 
 
 
 
 
  
 We need to be careful in distinguishing Qvac and Qelectron here.  Since vacant is the 
removal of an electron, so Qvac = - Qelectron = Qhole. 
 
10. The probability for a state to be occupied by an electron (fe) = 1 – probability for a 
state to be vacant (fvac), and a vacant state is the same as a hole occupying the 
corresponding state of the hole band. 
 fhole = fvac =1-fe 
 
11. Since j=-nQv,  jhole = jvac. 
 
12.   Now we can consider the dynamical variable r and t for hole so that we can 
understand its behavior in real space.  As indicate previously, we have assumed thole = tvac 
= t.  Since vhole=vvac, we have rhole=rvac.  Similarly, “acceleration” ahole = avac.  For these 
reasons, hole and “vacant” in real space are “essentially the same particle”.    
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13. In summary: 
 
 
 
 
 
 
 
 
 
 
V. Intrinsic semiconductor 
 
1. Energy layout 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ehole band = -Ereal band 
Ehole = -Evac 
khole = - kvac 
m*hole = -m*vac 
vhole =  vvac 
Qhole = Qvac=-Qelectron= e 
jhole = jvac 
fhole = fvac =1-fe
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2. Concentration of election in conduction band. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Above calculation can be applied to holes in hole band, and this gives the 
concentration of vacancies in valance band: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Law of mass acrion: 
 
 
 
 
 
 
 
 
 
 It turns out this relationship is always true, no matter whether the semiconductor 
is doped or not.  For example, if the doped impurities introduce more electrons to the 
conduction band, n will increase.  However, µ will also shift towards the conduction band 
edge and further away from the valance band edge.  This will reduce p and maintain a 
constant product np. 
  
5. In case of an intrinsic semiconductor, n=p 
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6. Resistivity of semiconductor. 
  
 
 
 For metal, ρ depends on temperature because τ depends on temperature 
(according to the phonon concentration). 
 For semiconductor, n is more sensitive to temperature.  Hence,  
 
 
 
 This will become dominant at low temperatures.  
  
VI. Doped semiconductors 
 
1. Two types of  impurities. 
 (i) Donor 
 Add electrons to the conduction band.  e.g. P for Si. 
 No. of impurities per unit volume = ND. 
 No. of ionized (i.e. positive ion) impurities per unit volume =  ND

+. 
 Donor introduces donor levels just below the conduction band edge.  
 
 
 
 
 
 
 
 
 
 
 
 If we know ED, we can calculate ND

+: 
 
 
 
 
 
 
 
 (ii) Acceptor 
 Take electrons from the valance band.  e.g. B for Si. 
 No. of impurities per unit volume = NA. 
 No. of ionized (i.e. negative ion) impurities per unit volume =  NA

-. 
 Acceptor introduces acceptor levels just above the valance band edge. 
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 If we know ED, we can calculate ND

+: 
 
 
 
 
 
 
 
 
2 Above equations can be derived in this way.  Consider a semiconductor is doped 
with impurities.  Some of these impurities will become ions by giving up electrons or 
absorbing electrons. 
 If         ND =  total number of impurity atoms (before ionization) 
         and     ND

+=  number of impurity ions 
 Number of electrons in the donor band is nD = ND - ND

+. 
 Free energy of these electrons are given by: 
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3 For silicon, it has 4 electrons in p-orbitals that can hold 6 electrons.  Therefore we 
expect these three p-orbitals split into two full valance bands and one empty conduction 
band.  That is the reason why gA=4 and gD=2. 
 
4 Estimation of EA and ED: 
 Ed = EC - ED can be consider as the “ionization energy” (or EC - ED is the 
“electron affinity”) of the donor impurity atom in the environment of the semiconductor.  
Bohr’s equation for ionization energy: 
 
 
 
Obviously, Ed is much smaller than the real ionization atom Eion of  the impurity atom in 
vacuum.  There are two major reasons for this: 
 (i) The mass of the “free electron” should be replaced by the effective mass 
of the conduction band.  
 (ii) Potential of the impurity ion should be modified by the surrounding 
medium.  The dielectric constant of the semiconductor has to be taken into account: 
 Hence the ionization energy should be modified by a factor of  (m*/me) 
 
 
 
 
 
 
 Example: Si doped with P. 
   Eion for P =10.55 eV 
   m* for Si = 0.2me 
   ε for Si = 11.7 
 
 
 
   This is very small in comparison with Eg (~1eV). 
 
5. Charge neutrality. 
 
 A semiconductor can be doped with both donors and acceptors at the same time.  
Condition of neutrality has to be followed: 
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6. For n-type semiconductor: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. For p-type semiconductor: 
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VII. Basic equations use in semiconductors 
 
1. Diffusion equations 
 In general, conductivity in a semiconductor involves electrons and holes: 
 
 
 
 The second term in the above equation is the diffusion current.  It arises from non-
uniform carrier density. 
 In one dimension, for the negative carrier: 
 
 
 
 Consider the case of jn=0 
  
 
 
  
 
 By applying a potential V, all energies will be pushed up by the potential V. 
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2. Maxwell equations 
 
 
 
 
 
 
 
 
 
 
 
 
3. Continuity equations 
 
 
 
 
 
 Gn and Gp are electron and hole generation rate, in cm-3s-1, caused by external 
influences such as optical excitations or high electric field. 
 
 Un and Up are the recombination rate.  Un (or Up correspondingly) can be 
approximated as  
 
 
 
 
P is the minority density, p0 is the thermal equilibrium minority density, and τp is the 
minority lifetime.   
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VIII.  Diode 
 
1. When a p-type semiconductor and an n-type semiconductor are joined together, a 
p-n junction is formed.   
 
2. Charge density near the junction will not be uniformed.  When the junction is 
formed, electrons (majority carriers) from the n-side and holes (majority carriers) from 
the p-side will migrate to the other side through the junction.  These migrated particles, 
left the ionized impurities behind and a charged region (+ at the n side and – at the p-
side) is formed: 
 
 
 
 
 
 
 
 
 
 
 
This charge region at the junction area is called the depletion layer.  The width of the 
depletion depends on the voltage applied across the diode. 
 
 In equilibrium, at zero bias, the chemical potential has to be the same at both sides 
(because of the charge migration described above).  The conduction and valance bands 
will be bent in real space.  The variation will be drastic near the junction area. 
 
 Before junction is formed: 
 
  
 
 
 
 
 
 After junction is formed: 
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 Note that both electrons (n-side) and holes (p-side) have to go to higher energy 
states (hole band is valance band turn upside down).  This prevents further migration. 
The shift of the band edge energy across the junction is called the built in voltage Vbi.  
The effective electric potential should be higher at the n side and lower at the p side so 
that the majority carriers will not flow across the junction: 
 
 
 
 
 
 
 
 
 
The electric field is given by E=-∇φ: 
 
 
 
 
 
 
 
 
The electric field at the depletion layer is pointing from n to p.  This will exert a force 
acting on the electrons in the n-side in the direction from p to n, and a force on the holes 
in the p-side in the direction from n to p.  Note that this E field is intrinsic to a p-n 
junction.  There are two currents in the junction area.  The diffusion current due to the 
unbalance carrier density, and the drifting current due to the intrinsic electric field.  These 
two currents add up to 0. 
 
 
 
 
 
 
 
 
 
 
3. To calculate Vbi: 
 At the n-side: 
                 
 
 
 At the p-side: 
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4. Reverse bias  
 
 This will draw electrons from the n-side and holes from the p-side.  The depletion 
width will grow and the junction resistance will increase.  No further current flow is 
allowed. 
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3. Forward bias  
 
 This will “push” electrons in the n-side and holes in the p-side towards the 
junction.  The depletion width will become thiner.  A current can be established and 
maintained if the push is large enough. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
For most silicon diodes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. I-V characteristics of a p-n junction 
 
 Assume positive V when it is forward bias: 
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There are two currents from two types of majority carriers, jn (electrons) and jp (holes).   
 
Nearly all electric field (and hence potential) are used to “push” carriers through the 
depletion layer.  In other words, E~0 at area outside the depletion layer ⇒ mostly 
diffusion current outside the depletion layer. 
 
Diffusion current needs inhomogeneity in carrier density.  This is indeed the case, 
because of recombination.  Recombination is the combination of electrons in the 
conduction band and holes in the valance band.  i.e. 
 
 
 
 
 
 
 
To calculate the current in the diode, we need only to consider one side, say, the n-side.  
The current at the p-side should be similar to the n-side.  Define V to be positive when 
the bias is forward and negative when the bias is reverse, as shown in the above figure.  
Current equation in neutral region (i.e. away from the depletion layer) is given by the 
continuity equation: 
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Current equations: 
 
 
 
 
 
 
 
 
 
 
Combine these with the continuity equation: 
 
 
 
 
 
 
 
 
 
 
Assume there is no external excitation, i.e., G=0.  The second equation becomes 
 
 
 
and approximate the recombination rate of the majority electrons (depends on the 
minority hole density) as 
 
 
 
τp is the hole relaxation time.  pn0 is the hole density of the n-side at thermal equilibrium 
with V=0.  For a long diode, pn0 is the hole density at the very end of the n-side. 
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General solution: 
 
 
 
 
\Now consider the boundary condition in solving this equation.  In the depletion layer, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pn(x=∞) = Pn0 ⇒  A = 0 
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This current depends on x because of the recombination process.  The current through the 
diode depends on the geometry (e.g. length) of the diode.  For simplicity, we can define 
the current to be the current at the depletion layer (x=xn) because the depletion layer is 
thin and there is not too many recombination in this region, i.e. Lp>>xn+xp, and similarly 
Ln>>xn+xp. 
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