
Chapter 9.  Electrons in magnetic fields 
 
I. Flux quantization 
 
1. Quantization of angular momentum gives rise to quantization of magnetic field. 
 
2. If a charge particle is moving in a close orbit, quantization condition is given by 
the Bohr-Sommerfeld relation: 
 
 
 
where p is the total momentum of the free electron. 
 
3. In cgs units, if the particle is moving in a magnetic field, p is the canonical 
momentum: 
  
 
 
4.
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
II. Motion of electron in a magnetic field 
 
1.  In a constant homogeneous field, classically in real space, the electron moves in 
circular loop (or “helix”) with cyclotron frequency 

Note that ωc does not depend on the radius of the orbit.  It depends only on B.  The 
radius (hence area) can be any value and v is proportion to r: 
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To maintain the same v, r decreases as B is increased.  K is also proportion to r: 
Area of the circular loop in real space is proportional (in the same field) to the area of the 
circular loop in k space: 

Note that the ratio depends on B (~B2).  As B increases, Ar decreases (confinement) and 
Ak increases. 
 
2. Quantum mechanically, r takes only the “quantized radii”: Similar to the classical 
case (but for different reasons), if we track the real orbit of quantum number n, we will 
find the orbit shrink as B is increased.  In contrary to classical mechanics, v increases 
with B because v is proportional to r: 

 
In summary,  
 Classically we require v=constant because of conservation of energy. 
 Quantum mechanically, we require quantization of angular momentum or flux 
quanta. 
 
 
 
3. As a result, the quantized energy of the n-th orbital depends on B: 

 
 The last term corresponds to the energy of a simple harmonic oscillator of 
cyclotron frequency ωc.  Indeed, there should be a “zero point energy” correspond to the 
smallest possible orbital with n=0.  i,e, More correctly, 

rqB k     mvk
h

h =⇒=

2

2

2

r

k qB 
r
k

A
A

⎟
⎠
⎞

⎜
⎝
⎛==
h

( ) ( )

B
n

  r                                      

 
B

n
A    nBA

02
n

0
nr0nr

π
Φ

=⇒

Φ
=⇒Φ=

 nqB2  k                              

m
Bnq2   v  , 

q
2 But

m
Bqn

  
B

n
     v   

B
n

 r

2
n

2
2

n0

2

2
02

c
02

n
02

n

h

hh

=

=∴
π

=Φ

π
Φ

=ω
π
Φ

=⇒
π
Φ

=

c

2
z

22
z

222
z

22
z

22
n

2

n n
m2
k

m
qBn 

m2
k  nqB2

m2
 

m2
k 

m2
k

m2
kE ω+=+=+=+= h

hhh

h

hhhh

c

2
z

2

n 2
1n

m2
k

E ω⎟
⎠
⎞

⎜
⎝
⎛ ++= h

h



We can also obtain this by solving Schroedinger equation of an electron in a constant B 
field. 
 
4. In summary, 
 For the same field: 
  E, r, and v increase as n increases.   
  
 
 
 
 
 
 
 
 
 
 
5. Define some arbitrary energy reference Eref.  Start from zero field, increase B 
gradually and energy En will increase with B.  One by one, all states with En < Eref will 
cross Eref.  Define Bn as the B field when En < Eref. 

III. Landau’s levels – energy degeneracy  
 
1. Assume the constant B field is along the z-axis.  We need only to consider the kx-
ky plane.  The wave function of the electron can be written as 

 
2. The electron will trace equal energy path in the kx-ky plane.  These paths are 
quantized so that 
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Note that ∆S is independent of n. 
 
3. State will be rearrange from the original “square grids” into landau levels: 
 
 
 
 
 
 
 
 
 
 
 
 
` 
 
 
 
 
4. All states between the n-th and (n+1)-th circles will “collapse” into the (n+1)-th 
circles.  This causes the high degeneracy of the Landau levels. 
 
5. Area between the (n-1)-th and n-th circles is 

which is a constant between any two consecutive circles (but proportional to B). 
∴  degeneracy D of the n-th level is  

Notes. 
(i) All Landau level n hold the same number of states (i.e. same degeneracy). 
(ii) The degeneracy D is proportional to B.  The proportional constant depends only 
on sample size A. 
(iii) If spin is considered, each Landau level will split into two because of the 
interaction between the spin and the field B. 
(iv) It takes a large number of landau levels to hold all the electrons.  For example, 
consider a 1cm3 sample in a magnetic field of 1T. 
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IV. De Hass-van Alphen (DhvA) effect 
 
1. If the Landau level is imposed the Fermi surface, the situation can be described by 
the following figure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) shows the n-th Landau tube with energy equal to the Fermi energy of the sample.  
Only electrons at the intersection between this Landau tube and the Fermi surface can 
remain in a “coherent state”, as shown in (b), which is relatively small amount.  
However, when the Landau tube is “tangent” to the Fermi surface as shown in (c), the 
number of these “coherent” electrons will increase dramatically and situation like this 
corresponds to a singularity in the density of states. 
   
2. When the Landau tube is tangent to a Fermi surfaces (as in (c) above), the 
intersection is a path called extremal orbit.  Extremal orbit is always perpendicular to the 
applied field. 
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3. Since  
 
 
  
Now the reference surface is actually the Fermi surface, i.e (Ak)ref=(Ak)extremal orbit,  
therefore the Landau tube will touch the extremal orbit when the magnetic field is 
changed by 
 
 
 
 
4. Any electronic properties that depend on the density of state at the Fermi level, 
like magnetization and conductivity, will oscillate with 1/B with a period given by 
 
 
 
 
5. By measuring the period of this oscillation, we can derive the area of the extremal 
orbit. 
 
 
 
 
6. Oscillation of magnetization M is known as De Hass-van Alphen (DhvA) effect.  
Oscillation of conductivity is known as Shubnikov- de Hass effect.  Quantities like 
thermoelectric power and thermal conductivity oscillate too.  
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7.  Example of de Haas- van Alphan effect: 
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8. The Fermi surface can be obtained by measuring the de Haas –van Alphen effect 
at different directions. 
 
V. Quantum Hall effect 
 
1. Quantum Hall effect occurs in 2-D electron gas. 
 
 
 
 
 
 
 
 
 
 

2. Result when the electron gas is two-dimensional:  
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3. As can be seen in above figure, Vy (i.e. ρT) forms steps.  There are two things to 
explain in the data: the step width and the step height. 
 
4. On the step width: note that the step width is not uniform, and it is becoming 
wider and wider as B is increased.  The step width is actually uniform with respect to 
1/B.  The reason for this is the same as that of dHvA effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For simplicity, let us assume at a certain field Bn when the Landau levels up to n are full.  
If B is increased slightly, each Landau level can hold more electrons and as a result, the 
highest n-level will become only partially full.  When B is increased exactly an amount of  
 
 
 
 
the n-th level will become completely empty and the (n-1)-level is now the highest level 
to be completely full.  N is the total number of electrons in the system.  
 
5. On the step height: let the B-field for the midpoint of the i-th step is Bi and 
assume this corresponds to the case when the i-level is full while all higher levels are 
empty.   

NB
1 ρ

=⎟
⎠
⎞

⎜
⎝
⎛∆

B 

No. of states n=1 1+2 1+2+3 1+2+3+4 

Total number of 
electrron in the syste, 

This gives number of 
Landau levels needed 
to hold all electrons. 

ttancons
NB

1
B

1                                           

B
N

B
N  B 1)(nBnN

n1n

n1n
1nn

=
ρ

=−⇒

ρ=−⇒ρ+=ρ=

+

+
+



 
 
6. The above discussions only help to estimate the step width and step height in 
quantum hall effect, but do not explain the formation of the steps!  The problem is from 
the fact that as B is increased and the Landau tubes “spread outward”, i (highest Landau 
tube with electrons in it) will indeed decrease as the degeneracy of the tubes increase.  
However, this only transfers electrons from higher tubes to lower tubes and it has no 
effect on n.  In other words, this has no effect on ρT (=B/ne) and ρT will still increase in 
proportion to B. 
 
 To explain the formation of the transverse resistivity (or conductivity) steps in 
quantum hall effect, we need impurities in the sample.  These impurities provide 
localized states that play a critical role in quantum hall effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
These localized (i.e. impurities) serve as an electron reservoir.  As a result, transfer of 
electrons occur between the Landau tube (extended states) and the impurities (localized 
states), but not between the Landau tubes.  For example, as the B field is increased, as the 
highest level will become partially full, but in reality it will immediately suck up 
electrons from the localized states and remains full.  Hence, the Landau tubes are either 
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full or empty.  n=Di where i is the highest full Landau level.  D increases proportional to 
B in the ∆(1/B) period when i is the same, as a result, ρT =B/ne is constant during this 
period of i.  As B is increase, to the degree that the i-level can be emptied, all the 
electrons in the i-level will suddenly return to the localized state and this will cause a 
sudden increase in ρT because of the reduction in n.  This is how the step is formed. 
 
7. Laughlin’s thought experiment.  The quantization of Hall conductivity can also be 
derived from the Laughlin’s though experiment.  This originates from the fact that this is 
a quantum effect and the result should be independent of the actual geometry of the 
device.  We can imagine the following device: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The 2-D electronm gas is rolled in a cylinder of unit dimension with the B-field attached 
to it in perpendicular, as shown in the above figure.  The circulating current I (Jx in the 
original set up) produces a flux Φ through the cylinder.  We can calculate RT = VH /I as 
follow.    
Let U be the total energy of the resistanceless system.  
 
 
 
By Faraday’s Law: 
 
 
 
 
 
 
Change in Φ will cause a change in energy U and this will also add electrons to the 
system (from the localized states).  However, if δΦ=Φ0 = h/e, all extended orbits are 
identical to those before the flux quanta is added.  If i electrons enter the system from the 
left at the beginning, the same amount of electrons has to be removed from the right 
when the increment in Φ reaches one flux quanta. 
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8. When the sample is very clean, quantum hall effect will not disappear as 
expected.  Instead, fractional quantum hall effect will occur. 
 
 
 
Fractional quantum hall effect can be explained by composite particles.  These particles 
are actually electrons bound to magnetic flux quanta. 
 
VI. Electron-electron interactions 
 
1.  A Fermi gas is a system of non-interacting fermions (like electrons); the same 
system with interactions is a Fermi liquid.  We can imagine there is a knob to turn the 
interactions gradually on and off. 
 
2. Landau’s theory on Fermi liquid:  Excitation of a Fermi liquid is one-one 
correspondence to a single particle excitation of the Fermi gas.  We can follow this one-
one correspondence by turn the knob of interactions.  Therefore, excitation of a Fermi 
liquid can be consider as a particle, called quasiparticle.  It may be thought of a single 
particle dressed with a distortion cloud ub the electron gas.  Since the two systems are not 
exactly the same, quasiparticle has lifetime. 
 
3. Landau’s theory simplifies the Fermi liquid dramatically.  Its success lies in the 
fact that electron-electron interaction has a long mean free path.  Reasons why it has a 
long mean free path: 
 (i) Pauli’s exclusion principle:  In a collision, both energy and momentum 
have to be conserved.   
 
 
 
 
 
 
 
 
 
 
 
Let k1 be an electron just outside the Fermi sphere as shown in the above figure, with an 
energy ε1>0 (let the Fermi energy be ε=0).  It is likely to collide with another electron k2, 
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inside the Fermi sphere ε2<0.  Pauli’s principle requires k3 and k4 to be outside the sphere, 
because all states inside the sphere are already occupied: 
 
 
 
This means k2 has to lie within a thin shell of ε1 below the Fermi surface: 
 
 
 
 
 
 
 
 
` 
 
 
 
By consideration of conservation of energy only, a factor of 
 
 
 
 
 
Electrons below the Fermi surface can collide with k1.   
By considering conservation of momentum, we know that not all k3 and k4 are possible: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hence the cross section of electron-electron interaction is reduce by a total factor of  
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For εF ~ 105K,  this corresponds to a factor of 104. 
 
 (ii) Screening effect:   
 
 
 
The electric potential due to an external charge Qext placed in the electron sea decay 
exponential with a length scale called Thormas Fermi screening length (1/ks): 
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