University of Kentucky Department of Physics and Astronomy PHY 525: Solid State Physics II Fall 2000 Test 2

Date: November 8, 2000 (Wednesday)

Time allowed: 50 minutes.

Answer all questions.

1. *Hall coefficient of a semiconductor*. (a) Starting from drift velocity approximation, show that the Hall coefficient of a semiconductor is given by

$$R_{\rm H} = \frac{1}{n:ec} \frac{1-b}{1+b}$$

where n_i is the intrinsic concentration, and b is the ratio of mobility in conduction and valance bands ($b=\mu_n/\mu_p$). (b) Consider two semiconductors A and B of with same energy gap. The following table gives the ratio of electron effective mass and relaxation time in the conduction and valance bands:

	m_n^*/m_p^*	τ_n / τ_p
Semiconductor A	0.3	30
Semiconductor B	0.8	15

Estimate the ratio of their Hall coefficients from Drude model. (c) For a semiconductor of energy gap equivalent to a temperature of 12500K, estimate the ratio of the Hall coefficient at 300K and 200K, $R_H(300K)/R_H(200K)$. Assume τ does not vary much in this temperature range.

2. Graded diode. In the depletion layer (width 2w) of a graded p-n junction, the doping level varies linearly with position: N_D - $N_A = kx$ for $-w \le x \le +w$. If the p- and n-semiconductors have doping level of N_A and N_D respectively. Let the effective density of state of the conduction and valance band be N_C and N_V respectively. Also let the energy gap of the intrinsic semiconductor be E_g . Assume all impurities are fully ionized. (a) Calculate chemical potential μn and μp in terms of N_D , N_A , N_C , N_V , and E_g , from this calculate the potential difference $\Delta \phi$ across the depletion layer. (b) What should be the electric field E at the two sides of the depletion layer? Find the electric field E(x) within the depletion layer. (c) Find the electric potential $\phi(x)$ within the depletion layer. (d) Determine the layer width 2w in term of $\Delta \phi$.