University of Kentucky
 Department of Physics and Astronomy

PHY 525. Introduction to Solid State Physics II

Final Examination.
Date: Dec 12, 2001
Time: 8:00-10:00
Answer all questions.

1. (25 points)

Consider a two dimensional square lattice of lattice parameter a. Each site provides two conducting electrons.
(a) Determine k_{F} in terms of a. Under free electron model, at what value of k_{y} will the Fermi sphere cross the boundary at $x=\pi / a$?
(b) The electrons are actually only nearly free and a gap of $2 \mathrm{U}=0.1 \mathrm{E}_{\mathrm{F}}$ opens up at the Brillouin zone boundary. At what value of k_{y} will the Fermi surface in the first Brillouin zone cross the boundary at $x=\pi / \mathrm{a}$? How about the second Brillouin zone?
You can express your answers in unit of π / a.
2. (25 points)
(a) Apply the Hund rules to find the ground state of an ion that has an outer shell of $3 \mathrm{~d}^{3}$. Write your answer in atomic notation.
(b) Let the magnetic moment of the above ion be μ. Find the magnetization as a function of magnetic field and temperature for a system formed by these ions with a concentration of n.
(c) Find the magnetization in the limit of $\mu \mathrm{B} \ll \mathrm{k}_{\mathrm{B}} \mathrm{T}$.
3. (25 points)

For an fcc lattice of magnetic spins it is impossible to find an antiferromagnetic arrangement in which all the nearest neighbors of any spin are antiparallel to it. The best that can be achieved, for example by having spins in alternate (2000) planes \uparrow and \downarrow, is eight antiparallel and four parallel neighbors. (Miller indices are referred to the conventional cubic unit cell).
(a) Develop a Néel theory appropriate to the case of two sublattices when only nearest neighbor exchange interactions are important; the effective field acting on an ion on the A sublattice would then be $B_{A}=B_{a}-\mu M_{B}-\varepsilon \mathrm{M}_{\mathrm{A}}$ with a similar expression for B_{B}. Show that the high temperature susceptibility is of the form $\chi=\mathrm{C} /(\mathrm{T}+\theta)$, where θ is related to the Néel temperature T_{N} by

$$
\frac{\theta}{\mathrm{T}_{\mathrm{N}}}=\frac{\mu+\varepsilon}{\mu-\varepsilon} .
$$

(b) If the same type of stoms occupy the two sublattices. Assume a particular site in sublattice A has n_{p} parallel nearest neighbors in the same sublattice and n_{a} antiparallel nearest neighbors in sublattice B. How will ε and μ depends on n_{a} and n_{p} ? Show that $\theta / \mathrm{T}_{\mathrm{N}}=3$ for the fcc structure mentioned above.
4. (25 points)

The penetration equation of a superconductivity may be written as $\lambda^{2} \nabla^{2} B=B$, where λ is the penetration depth. (a) Show that $B(x)$ inside a superconducting plate perpendicular to the x axis and of thickness δ is given by

$$
\mathrm{B}(\mathrm{x})=\mathrm{B}_{\mathrm{a}} \frac{\cosh (\mathrm{x} / \lambda)}{\cosh (\delta / 2 \lambda)},
$$

Where B_{a} is the field outside the plate and parallel to it; here $x=0$ is at the center of the plate. (b) The effective magnetization $\mathrm{M}(\mathrm{x})$ in the plate is defined by $\mathrm{B}(\mathrm{x})$ $B_{a}=4 \pi M(x)$. Show that, in CGS, $4 \pi M(x)=-B_{a}\left(1 / 8 \lambda^{2}\right)\left(\delta^{2}-4 x^{2}\right)$, for $\delta \ll \lambda$. In SI we replace the 4π by μ_{0}.

