University of Kentucky Department of Physics and Astronomy

PHY 525. Introduction to Solid State Physics II

Test 1.

Date: Oct 8, 2001 Time: 9:00-9:50 Answer all questions.

1. (25 points)

The crystal structure of copper is face-centered cubic (fcc) of lattice parameter a to be determined by X-ray diffraction ($\lambda = 17.89$ nm) at room temperature (T=293K). Distance between (hkl) planes of simple cubic is given as:

$$d = \frac{a}{\sqrt{h^2 + k^2 + 1^2}}$$

- (i) Determine the conditions on Miller indices of the diffraction peaks. What are the Miller indices of the first peak (i.e. smallest Bragg's angle θ)?
- (ii) The θ of the first peak is measured to be 25.38°. What is the lattice parameter of copper?
- (iii) The coefficient of linear thermal expansion is 1.91×10^{-5} K⁻¹. Where will be the first peek at T=1200K?

2. (25 points)

The relation between frequency ν and wavelength λ for surface tension waves on a liquid of density ρ and surface tension σ is

$$v^2 = \frac{2\pi\sigma}{\rho\lambda^3}$$

- (i) What is the density of state $D(\omega)$? Note that it is a two dimensional system. Assume the area of the surface to be A.
- (ii) Obtain the analogue of the Debye T^3 law for the surface contribution to the heat capacity of liquid helium very near to absolute zero. You can assume a cutoff frequency ω_D , similar to the Debye frequency we used in 3D crystal.