University of Kentucky Department of Physics and Astronomy

PHY 525. Introduction to Solid State Physics II

Test 2.

Date: Oct 12, 2001 Time: 9:00-9:50 Answer all questions.

1. (25 points)

The electron energy near the top of the valance band in a semiconductor is given by

 $E_v = -10^{-37} k^2$ (E_v in Joules, k in m⁻¹)

where \mathbf{k} is the wavevector. An electron is removed from the state

 $k = 10^9 \hat{k}_x m^{-1}$

where \hat{k}_x is a unit vector along the x axis. Calculate the following quantities of the resulting hole:

- (i) The effective mass.
- (ii) The energy.
- (iii) The momentum.
- (iv) The velocity.

Each quantity must include the sign (or direction).

2. (25 points)

Consider the close orbits of an electron in real space and k space when an external magnetic field B is applied. Let the area be A and S respectively. Note that the magnet flux BA is quantized in unit of $\Phi_0=h/e$.

- (i) Write down the relationship between A and S and hence the relationship between S and B.
- (ii) Calculate S for a metal X of valance 1 (i.e. one conducting electron per atom). The atomic density of the metal is 8.5×10^{28} m⁻³. Assume free electron model.
- (iii) In a de Haas-van Alphen experiment of metal X, the magnetic susceptibility is oscillating periodically with $\delta(1/B)$. Calculate the periodicity. How many oscillations are there as B is changed from 10.70 T to 10.93T?

Solution:

1.(i)
$$m_{h}^{-1} = \frac{1}{\hbar^{2}} \frac{\partial^{2} E_{h}}{\partial k^{2}} = -\frac{1}{\hbar^{2}} \frac{\partial^{2} E_{v}}{\partial k^{2}}$$
$$= -\frac{1}{\hbar^{2}} \frac{\partial^{2}}{\partial k^{2}} \left[-10^{-37} k^{2} \right]$$
$$= -\frac{1}{(1.055 \times 10^{-34})^{2}} \left[2 \times (-10^{-37}) \right]$$
$$= 5.57 \times 10^{-32} \text{ kg, or } 0.061 m_{\text{free electron}}$$

Note that the mass is positive. $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$

(ii)
$$E_{h} = -E_{v} = -\left[-10^{-37} k^{2}\right]$$

= $10^{-37} \times (10^{9})^{2}$
= $\underline{1 \times 10^{-19} }$ J, or 0.624 eV

Note that the energy is positive.

(iii)
$$\vec{p}_{h} = -\hbar \vec{k}_{e} = -1.055 \times 10^{-34} \times (10^{9} \ \hat{x})$$

= $-1.055 \times 10^{-25} \ \text{kgm/s} \ \hat{x}$

Note that it is in the - \hat{x} direction.

(iv)
$$\vec{p}_{h} = m_{h}\vec{v}_{h} \implies \vec{v}_{h} = \frac{\vec{p}_{h}}{m_{h}} = \frac{-1.055 \times 10^{-25} \ \hat{x}}{5.57 \times 10^{-32}}$$

= $\frac{-1.896 \times 10^{-6} \ \text{m/s} \ \hat{x}}{10^{-6} \ \text{m/s} \ \hat{x}}$

Note that it is in the - \hat{x} direction.

2. (i)
$$\hbar \vec{k} = e\vec{v} \times \vec{B} \implies \hbar \Delta k = e\Delta r B \implies \hbar^2 (\Delta k)^2 = e^2 (\Delta r)^2 B^2$$

 $\implies \underline{\hbar^2 S = e^2 A B^2} \qquad ----(1)$

With AB =
$$\Phi$$
, (1) $\Rightarrow \underline{\hbar^2 S = e^2 \Phi B}$ ----(2)

(ii)
$$2 \times \frac{\frac{4}{3}\pi k_{F}^{3}}{\frac{(2\pi)^{3}}{V}} = N \implies k_{F}^{3} = \frac{N}{V}(2\pi)^{3}\frac{3}{4\pi}\cdot\frac{1}{2}$$

 $\implies k_{F}^{3} = 8.5 \times 10^{28} \times (2\pi)^{3}\frac{3}{4\pi}\cdot\frac{1}{2}$
 $\implies k_{F}^{3} = 2.5167 \times 10^{30}$
 $\implies k_{F} = 1.3602 \times 10^{10} \text{ m}^{-1}$
 $\therefore S = \pi k_{F}^{2} = \pi (1.3602 \times 10^{10})^{2} = \underline{5.813 \times 10^{20} \text{ m}^{-2}}$

(iii) (2)
$$\Rightarrow \frac{1}{B} = \frac{e^2 \Phi}{\hbar^2 S} \Rightarrow \delta \left(\frac{1}{B}\right) = \frac{e^2}{\hbar^2 S} \delta \Phi$$
$$\Rightarrow \delta \left(\frac{1}{B}\right) = \frac{e^2}{\hbar^2 S} \Phi_0 \qquad (\Phi_0 = \frac{h}{e})$$
$$\Rightarrow \delta \left(\frac{1}{B}\right) = \frac{e^2}{\hbar^2 S} \frac{h}{e} = \frac{he}{\hbar^2 S}$$
$$\Rightarrow \delta \left(\frac{1}{B}\right) = \frac{6.626 \times 10^{-34} \times 1.6 \times 10^{-19}}{(1.055 \times 10^{-34})^2 \times 5.813 \times 10^{20}}$$
$$\Rightarrow \delta \left(\frac{1}{B}\right) = 1.639 \times 10^{-5} \text{ T}^{-1}$$

For the given magnetic fields, $B_1 = 10.7T \Rightarrow \frac{1}{B_1} = \frac{1}{10.7} = 0.09346 \text{ T}^{-1}$ $B_2 = 10.93T \Rightarrow \frac{1}{B_2} = \frac{1}{10.93} = 0.09149 \text{ T}^{-1}$ $\therefore \Delta \left(\frac{1}{B}\right) = \frac{1}{B_1} - \frac{1}{B_2} = 0.09346 - 0.09149 = 1.969 \times 10^{-3} \text{ T}^{-1}$ \therefore Number of oscillations $= \frac{1.969 \times 10^{-3}}{1.639 \times 10^{-5}} = \underline{120.2 \text{ oscillations}}$