© Kwok-Wai Ng, 1998.

2. *Magnetism of rare earth ions* The basic electronic configurations of Pr^{3+} , Ho^{3+} , and Cr^{2+} are $4f^2$, $4f^{10}$, and $3d^4$ respectively. (a) Determine the ground state of these three ions with Hund's rule. (b) Assume the same ion density n=N/V, compare the susceptibility of a Ho^{3+} compound to that of Pr^{3+} at the same temperature. (c) Assume the same ion density n=N/V, compare the susceptibility of a Cr^{2+} compound to that of Pr^{3+} at the same temperature. The g-factor is given by the Lande equation:

$$g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}.$$

(a)

 $Pr^{3+}:4f^2$

$$\Sigma L = 5$$

$$\Sigma S = 1$$

$$J = |L - S| = 4$$

Ground state: ³H₄
Ho³⁺: 4f¹⁰

$$\Sigma L = 6$$

$$\Sigma S = 2$$

$$J = L + S = 8$$

Ground state: $\frac{{}^{5}I_{8}}{\underline{}^{2}}$

$$Cr^{2+} : 3d^{4}$$

 $\begin{array}{ll} \Sigma \ L = 2 \\ \Sigma \ S \ = \ 2 \\ J = \ |L - S| = \ 0 \end{array}$

Ground state: ${}^{5}D_{0}$

(b) For the same n and T, $\chi \propto p^2$, where $p = g\sqrt{j(j+1)}$. g is given by the Lande equation: $g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$ For Pr³⁺, L = 5, S = 1, J = 4. g(Pr³⁺) = $1 + \frac{20 + 2 - 30}{40} = 0.8$ $p(Pr^{3+}) = 0.8 \times \sqrt{20} = 3.58$ For Ho³⁺, L = 6, S = 2, J = 8. g(Ho³⁺) = $1 + \frac{72 + 6 - 42}{144} = 1.25$ $p(Ho^{3+}) = 1.25 \times \sqrt{72} = 10.6$ $\therefore \frac{\chi(Ho^{3+})}{\chi(Pr^{3+})} = \left(\frac{p(Ho^{3+})}{p(Pr^{3+})}\right)^2 = \left(\frac{10.6}{3.58}\right)^2 = \underline{8.8}$

- (c) We need to realize that Cr is a transition metal, and we cannot use the j obtained from Hund's rule. Instead, it is more accurate to set J = S and L = 0.
 - :. For Cr^{2+} , J = S = 2 and L = 0. $g(Cr^{2+}) = 1 + \frac{6+6-0}{12} = 2$ $p(Ho^{3+}) = 2 \times \sqrt{6} = 4.90$

From part (b), for Pr^{3+} , $p(Pr^{3+}) = 3.58$

•

$$\therefore \frac{\chi(Cr^{2+})}{\chi(Pr^{3+})} = \left(\frac{p(Cr^{2+})}{p(Pr^{3+})}\right)^2 = \left(\frac{4.90}{3.58}\right)^2 = \underline{1.87}$$