© Kwok-Wai Ng, 1998.

1. Surface plasmons. Consider a semi-infinite plasma on the positive side of the plane z = 0. The negative side (z<0) is vacuum. Given solution of Laplace's equation $\nabla^2 \varphi = 0$ in the plasma is $\varphi_i(x,z) = A \cos kx e^{-kz}$ and that of vacuum is $\varphi_0(x,z) = A \cos kx e^{kz}$. (a) Write down all boundary conditions of electric fields at the boundary z=0. (b) Show that the frequency ω_s of a surface plasma oscillation is $\omega_s = \omega_p / \sqrt{2}$, where ω_p is the plasma frequency. (c) The electron concentration in a copper sample is $8 \times 10^{22} \text{ cm}^{-3}$, mean free path is ~400Å, and the Fermi velocity is $1.6 \times 10^8 \text{ cm s}^{-1}$. Mass of an electron is 9.11×10^{-28} g. Estimate the plasma frequency at the surface of this sample.

Solution:

- (a) $(D_{\perp})_i = (D_{\perp})_0 \implies (\epsilon E_{\perp})_i = (E_{\perp})_0$ $(E_{//})_i = (E_{//})_0$
- (b) $(E_{\perp})_i = -Ak \cos kx e^{-kz}$

 $(E_{\perp})_0 = Ak \cos kx e^{kz}$

 $(\epsilon E_{\perp})_{i} = (E_{\perp})_{0} \implies -\epsilon(\omega_{s}) \operatorname{Ak} \cos kx \ e^{-kz} = \operatorname{Ak} \cos kx \ e^{kz}$ $\implies \epsilon(\omega_{s}) = -1$ In general, $\epsilon(\omega) = 1 - \frac{\omega_{p}^{2}}{\omega^{2}} \implies -1 = 1 - \frac{\omega_{p}^{2}}{\omega_{s}^{2}}$ $\implies \omega_{s}^{2} = \frac{\omega_{p}^{2}}{2} \implies \omega_{s} = \frac{\omega_{p}}{\sqrt{2}}$ (c) $\omega_{p}^{2} = \frac{4\pi ne^{2}}{m} = \frac{4\pi \times 8 \times 10^{22} \times (4.8 \times 10^{-10})^{2}}{9.11 \times 10^{-28}}$ $\implies \omega_{p} = 1.6 \times 10^{16} / s$ $\therefore \omega_{s} = 1.1 \times 10^{16} / s$