University of Kentucky
 Department of Physics and Astronomy

PHY 520 Introduction to Quantum Mechanics
Spring 2008
Test 2

Name: \qquad
Answer all questions. Write down all work in detail.
Do as many problems as possible. The ideal score of this test is considered as 80. Your actual score will be 80 if your total exceeds this value.

Time allowed: 50 minutes

1. (25 points)

The eigenfunctions for a potential of the form

$$
\begin{array}{rlrl}
\mathrm{V}(\mathrm{x}) & =\infty & & \mathrm{x}<0 ; \mathrm{x}>\mathrm{a} \\
& =0 & 0<x<a
\end{array}
$$

are of the form

$$
\mathrm{u}_{\mathrm{n}}(\mathrm{x})=\sqrt{\frac{2}{\mathrm{a}}} \sin \left(\frac{\mathrm{n} \pi \mathrm{x}}{\mathrm{a}}\right)
$$

Suppose a particle in the preceding potential has an initial normalized wave function of the form

$$
\psi(\mathrm{x})=\operatorname{Acos}^{4}\left(\frac{\pi \mathrm{x}}{\mathrm{a}}\right) \sin \left(\frac{\pi \mathrm{x}}{\mathrm{a}}\right)
$$

(a) (10 points)

What is the form of $\psi(x, t)$?
(b) (7 points)

Calculate the normalization constant A.
(c) (8 points)

What is the probability that an energy measurement yields E_{3}, where

$$
\mathrm{E}_{\mathrm{n}}=\frac{\mathrm{n}^{2} \pi^{2} \hbar^{2}}{2 \mathrm{ma}^{2}} ?
$$

2. (25 points)

Consider the potential in the form

$$
\begin{aligned}
\mathrm{V}(\mathrm{x}) & =-\mathrm{V}_{0} & & -\mathrm{a}<\mathrm{x}<\mathrm{a} \\
& =0 & & \mathrm{x}<-\mathrm{a} \text { or } \mathrm{x}>\mathrm{a}
\end{aligned}
$$

and energy $\mathrm{E}<0$.

(a) (5 points)

With the wave functions given in the above figure, what are q and α in terms of V_{0}, E , and mass m ?
(b) (10 points)

For both cases of $\psi_{\text {II }}$, derive dispersion relationship between E, α, and q.
(c) (3 points)

Ground state belongs to which case of $\psi_{\text {II }}$ (i.e. $\psi_{\text {II }}=\mathrm{B} \cos \mathrm{qx}$ or $\mathrm{B} \sin$ $\mathrm{qx})$? Briefly explain your answer. The first excited state belongs to which case of $\psi_{\text {II }}$?
(d) (7 points)

Calculate the minimum V_{0} required to ensure there is at least two bound states in the well.
3. (25 points)

Undergraduate students: do either 3A or 3B, but NOT both.
Graduate students: do 3B only.
3A. (25 points)
Consider a particle of mass m in a "semi-circular" potential as shown in the following diagram

(a) (10 points)

Approximate above potential at its minimum with another potential $\mathrm{V}=\mathrm{Ax}+\mathrm{B}$. Write A and B in terms of R and V_{0}.
(b) (10 points)

Estimate the ground state energy.
(c) (5 points)

What are <x> and <p>?

3B. (25 points)
Consider a particle of mass m in a " $6-12$ " potential as shown in the following diagram:

(a) (5 points)

Determine r_{0} and V_{0} in terms of A and B.
(b) (10 points)

Approximate above potential at its minimum with another potential $\mathrm{V}=\mathrm{k}\left(\mathrm{r}-\mathrm{r}_{0}\right)^{2} / 2+\mathrm{C}$. Write k and C in terms of A and B .
(c) (10 points)

Estimate the ground state energy.
4. (25 points)

Answer all five questions. Circle the right answer.
4A. The ladder opperator of a simple harmonic oscillator is defined as

$$
a=\left(\sqrt{\frac{m \omega}{2 \hbar}} x-i \frac{p}{\sqrt{2 m \omega}}\right)
$$

Which of the following is not correct?
A. $\left[a^{+}, a\right]=0$
B. $\left[\mathrm{H}, \mathrm{a}^{+} \mathrm{a}\right]=0$
C. $\left[H, \mathrm{a}^{+}\right]=\hbar \omega \mathrm{a}^{+}$
D. $\mathrm{H}=\left(\mathrm{a}^{+} \mathrm{a}+\frac{1}{2}\right) \hbar \omega$
E. a|0>=0 where $\mid 0>$ is the ground state

4B. Which of the following is not correct about the Hermitian operator A:
A. All eigenvalues of A must be real.
B. All eigenvalues of A must have different values. No two of them have the same value.
C. For continuous eigenfunctions, $\int \psi\left(\mathrm{A} \phi \psi_{\mathrm{n}}\right)^{*} \mathrm{dx}=\int \phi^{*} \mathrm{~A}^{+} \psi \mathrm{dx}$
D. For any operator X (not necessary Hermitian), $\mathrm{A}=\mathrm{X}^{+} \mathrm{X}$ is Hermitian.
E. In quantum mechanics, the operator of a physical observable must be Hermitian..

4C. Which of the following expression is not correct:
A. $\sum_{\mathrm{n}}|\mathrm{n}><\mathrm{n}|=1$
B. $\sum_{\mathrm{n}}\langle\mathrm{n} \mid \mathrm{n}\rangle=1$
C. $\langle\psi \mid \phi\rangle^{*}=\langle\phi \mid \psi\rangle$
D. $<\phi\left|\alpha \psi_{1}+\beta \psi_{2}>=\alpha<\phi\right| \psi_{1}>+\beta<\phi \mid \psi_{2}>$
E. $\langle\psi| \mathrm{A}\left|\phi>^{*}=<\phi\right| \mathrm{A}^{+}|\psi\rangle$

4D. Which of the following is a possible eigenstate of the simple harmonic potential. In all these equations, $\mathrm{y}=(2 \pi \mathrm{~m} \omega / \mathrm{h})^{1 / 2}$ and $\omega=(\mathrm{k} / \mathrm{m})^{1 / 2}$. A is the normalization constant.
A. $\Psi(x)=A\left(32 y^{6}-160 y^{3}+129 y\right) \exp \left(y^{2} / 2\right)$
B. $\Psi(x)=A\left(16 y^{4}+48 y^{2}+12\right) \exp \left(-y^{2} / 2\right)$
C. $\Psi(x)=A\left(4 y^{2}-2\right) \exp (-y / 2)$
D. $\Psi(x)=A(2 y) \exp \left(-y^{2} / 2\right)$
E. $\Psi(x)=A\left(8 y^{3}-12 y\right) \exp \left(y^{2} / 2\right)$

4E. What is the energy eigenvalue of the simple harmonic eigenstate

$$
\psi(x)=A\left(64 y^{6}-480 y^{4}+720 x^{2}-120\right) \exp \left(-y^{2} / 2\right)
$$

where $\mathrm{y}=(2 \pi \mathrm{~m} \omega / \mathrm{h})^{1 / 2}, \omega=(\mathrm{k} / \mathrm{m})^{1 / 2}$, and A is the normalization constant?
A. $\frac{1}{2} \hbar \omega$
B. $\frac{3}{2} \hbar \omega$
C. $\frac{7}{2} \hbar \omega$
D. $6 \hbar \omega$
E. $\frac{13}{2} \hbar \omega$

