PHYSICS 211—PRACTICE EXAM 3

NAME (printed)	
SIGNATURE	
Student Number (SSN) -	
SECTION	

INSTRUCTIONS

- 1) Wait for oral instructions before starting the test.
- 2) Remember to justify (in English) as many steps as possible for partial credit.
- 3) No calculators or other aids permitted.

For the graders:

1.	
2.	

9		
ふ .		

4.

 $\sin \theta = o/h$ $\cos \theta = a/h$ $\tan \theta = o/a$

$$\sin(90^\circ - \theta) = \cos\theta \qquad \cos(90^\circ - \theta) = \sin\theta$$

$$\sin 0 = 0$$
 $\cos 0 = 1$
 $\sin 90^{\circ} = 1$ $\cos 90^{\circ} = 0$
 $\sin 30^{\circ} = 1/2$ $\cos 60^{\circ} = 1/2$

$$2\sin\theta\cos\theta = \sin 2\theta$$

1. Circular motion I

a) i) A circle has radius r. If the arc length of a certain segment of the circle is 2r, how many radians is the segment angle? [2 points]

ii) How many radians is one complete revolution? [2 points]

b) Write down the rotational equivalent of the linear-motion displacent equation $v = v_0 + at$. [4 points]

c) Write down the rotational equivalent of the linear-motion displacent equation $x = v_0 t + \frac{1}{2}at^2$. [4 points]

1. d) A disc, starting from rest, undergoes a constant angular acceleration for a time t_1 and reaches an angular velocity of ω_1 . It then undergoes a constant negative acceleration and comes to rest in a time t_2 . Find an expression, in terms of the quantities t_1 , t_2 , and ω_1 for the total number of revolutions of the disc in the time $t_1 + t_2$. [13 points]

2. Circular motion II and Gravity

a) An object of mass m is travelling at constant speed v in a circle of radius r. Write down an expression for the magnitude of the force required for this circular motion. [4 points]

b) Write down the force F due to the gravitational attraction between two point masses m_1 and m_2 separated by a distance r (use the symbol G for the universal constant). [4 points]

c) The answer to (b) is still valid if the point masses are replaced by spheres. From where to where is r measured in this case? [4 points]

2. d) A non-rotating spherical planet has radius R and uniform density ρ (mass per unit volume). A small rock is orbiting the planet just above the surface (ie at R; there is no atmosphere to slow it down!). Find an expression for the orbital period T of the rock. Express your answer in terms of ρ , and G. (Your answer will not contain R). [13 points] [HINTS: Volume of a sphere of radius r is $\frac{4}{3}\pi r^3$; Mass = volume × density]

3. Equilibrium.

a) Write down the torque τ about an axis A, if a force F acts at a point B a distance d from the axis. The force acts in a direction *perpendicular* to the line AB. [4 points]

a) Write down the torque τ about an axis A, if a force F acts at a point B a distance L from the axis. The force acts in a direction θ with respect to the line AB. [4 points]

c) Write down (in mathematical notation) the two conditions for equilibrium. [2 points each]

3. d) A non-uniform rod, of mass M and length ℓ , has its center of gravity located a distance a from the left end. Find expressions for the forces F_L and F_R that need to be applied at the left and right hand ends of the rod in order to keep the rod horizontal and above the ground. [13 points]

4. Rotational Dynamics.

a) Write down the form of Newton's second law of motion applicable to rotational motion (in the form $\tau = \cdots$), and define each symbol in words. [4 points]

b) A massless rod of length L = 6m has a mass m = 10kg fixed at one end and an equal mass m = 10kg fixed at the other end. What is the moment of inertia about an axis perpendicular to the rod and through its center? [4 points]

c) A massless rod of length L = 6m has a mass m = 10kg fixed at one end and an equal mass m = 10kg fixed at the other end. What is the moment of inertia about an axis perpendicular to the rod and through one of its ends? [4 points]

4. d) Rotational Dynamics.

A cylinder with moment of inertia $I_1 = 1$ kg.m² rotates with angular velocity $\omega_1 = 6$ rad/s about a frictionless vertical axle. See "initial" diagram below. A second cylinder, with moment of inertia $I_2 = 2$ kg.m², initially not rotating, drops onto the first cylinder. Since the surfaces are rough, the two eventually reach the same angular velocity ω_2 , as shown in "intermediate" below. Next, a third cylinder, with moment of inertia $I_3 = 3$ kg.m², initially not rotating, drops onto the first two to produce the "final" result shown below, with all three rotating at the same angular velocity ω_3 .

(i) What is the moment of inertia of the "final" system? [3 points]

(ii) What are the "intermediate" and "final" angular velocities, ω_2 and ω_3 ? [5 points]

(iii) What is the ratio of the total initial to the total final kinetic energy? [5 points]