Isaac Shlosman
University of Kentucky, Lexington, USA

- and
Theoretical Astrophysics
October 27, 2015 Osaka University, Japan ?




LECTURE 3
AGN: INFLOWS VERSUS OUTFLOWS

Accretion and AGN power

Winds from accretion disks and driving mechanisms
Broad-line regions in AGN and outflows

AGN tori and outflows

Collimated winds: jets

Where Is accretion and where i1s an outflow



OBSERVATIONAL EVIDENCE
FOR INFLOWS AND OUTFLOWS IN AGN

*» Review of AGN energetics

- 45 M _ .
L =1 Mc? ~ 6x10 (o 1) (1 M@/yr) erg/s accretion luminosity

_ 4mGemy, _ 46 Me _ _ _
L = o Mg~ 1.3x 10 (108M@) erg/s the Eddington luminosity

effective temperature of

Thp ~( = )1/4~ 105( 46L )1/4( : s ) 8 blackbody accretion disk
10%"erg/s 1light-day emission > peaks at ~ 1016 Hz

MR%0

accretion disk
continuum




OBSERVATIONS: INFLOWS AND OUTFLOWS IN AGN

*» Analogy with hot stars A/ Mn 1 24030.8-A

Optical/UV spectroscopy: blueshifted absorption
or P Cygni line profiles

F. --stellar radiation flux

v
a,,4 — radiative acceleration
K, — opacity coeff.
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OBSERVATIONS: INFLOWS AND OUTFLOWS IN AGN

s Analogy with solar (Parker) wind

What triggers the solar wind:
waves and turbulence,
or magnetic reconnection?

Some stars have disks (T Tauri) and winds

MHD turbulence

log,o t (years) —> granulation

(Matt & Pudritz 2005)



OBSERVATIONS: INFLOWS AND OUTFLOWS IN AGN

» Analogy with hot stars ————————— ———— ———

10 K _

T-range for radiation-driven - .
and coronal stellar winds 104 _
- Massive stars: -

102 radiation-driven |

winds

Ly/Lo

T-range for geometrically-thin 197
accretion disks in AGN is -
similar to stellar range! 107°

(driven by MHD

l —4
10 = turbulence)

AGN winds can be o | |

radiation-driven! 10 104
Tegr (K)

0.03 =
0.01

Solar-type stars:
coronal winds
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OBSERVATIONS: INFLOWS AND OUTFLOWS IN AGN

* Evidence for outflows: BAL QSOs Similarity of the CIV line profile of

7 BAL QSOs (red throughs), 2 non-BAL QSOs the nova-like variable RW Sex with
those of BAL QSOs
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Trump et al. 2006
All BALQSOs absorption lines are blueshifted =>outflows !




OBSERVATIONS: INFLOWS AND OUTFLOWS IN AGN

¢ Evidence for outflows: high-ionization UV emission lines (HILS) in QSOs

blueshifted CIV emission line
In luminous radio-quiet and
radio loud QSOs

TABLE 1
REDSHIFT DIFFERENCES

Velocity of Velocity of
Mg u relative to C 1] relative
Object Crvikms™) to C1v(kms™")

BQS

01174213 ........ 1200
1008 +133 ........ 2500
1241 +176 1200
13384416 ........ 4400
13524011 1500
1522+ 101 1600
1630+ 377 1400
1634+ 706 200

1750 + 439 825 + 282

o Lozl

—-1000 0 1000 2000

CIV Blueshift [km/s]

Corbin et al. (1990) Richards et al. (2011)

HILs in QSOs are blueshifted
By ~few x 100 — 1000 km/s => these broad line produced in winds !

Velocity (km s ')



OBSERVATIONS: INFLOWS AND OUTFLOWS IN AGN

¢ Evidence for outflows: warm absorbers in Seyfert galaxies

Covering factors can be as high as 0.5 < about 50% of Seyferts show warm absorber

warm absorber fit to the ASCA satellite spectrum R
of NGC 3783 = Ne IX absorption line Fe K line in Fairal 9 from ASCA

4 Ne IX absortion edge
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Mushotzky (1997) Reynolds (1997)

channel energy (keV)
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OBSERVATIONS: INFLOWS AND OUTFLOWS IN AGN

¢ Evidence for outflows: ultra-fast X-ray outflows (UFOs)

Very fast outflows of highly ionized material by XMM/Newton in absorption lines of highly
lonized Fe, S, Mg - warm absorbers?

Fe Ka line normalized by continuum emission:
absorption line well defined, but emission line much less defined

L,~0.1L,, Vv~0.13c!
The physical implications are:
persistent (>6-7 yrs), massive wide-angle wind, covering 0.3-0.6,
M (wind) ~ M (accretion), column density N,, ~ 8x1023 cm2 ,
super-Eddington - Compton-thick wind?
| BUT: ,
Often only one line is detected: unsure identification,
lonization/column density
Region strongly influenced by:
background subtraction, continuum modelling,

P [ower effective area/resolution energy ke
PG 1211+143; Pounds & Reeves (2009) P Cygni line profile




OBSERVATIONS: INFLOWS AND OUTFLOWS IN AGN

¢ Evidence for outflows: jets in radio and other (AGN) galaxies

N
A\ 1
N : VLA -90 cm
Eadio Galaxy 3C218 VLA images (o) NEAD 1296

Jet in M87 - optical emission is
synchrotron mechanism
(electrons accelerated in B-field)
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OBSERVATIONS: INFLOWS AND OUTFLOWS IN AGN

¢ Evidense for outflows: summary

Uncollimated or partially collimated winds:
UV resonance lines in QSOs and Seyferts (line-driven winds)
BAL QSOs
UV absorbers: warm absorbers, UFOs (X-ray Ultra-Fast Outflows)
Super-Eddington winds?

Collimated winds (jets)
Powerful and not so powerful radio galaxies
(RLQ, FR 11, FR I), Seyferts
LLAGN (XRB hard state compact jets)

13



THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Summary: radiation-driven winds

material

To drive a wind by radiation > need opacity > F.4>F

grav

resonance lines dust electron scattering
eg.,CIV e
wind T < 10,000 K wind T < 2,000 K wind fully ionized )
T> 10,000 K .
W \ wind
> But linewidth ~ 10* km/s' o c\““‘Q
>T,..~ 100K | o Al _ S—
No lines! No dust! ?,\&“‘ ‘o“z&«ﬂ“‘ super—Ede)ngton | engine
» What is the geometry oot Y wind \

of the wind? «
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THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Radiation-driven disk winds: driving spherical wind by resonance lines

V(#)/[Vmax = We + (1 —w,) (r/*"'n‘m:{)ﬁJ
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0
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by
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p varying

velocity (1,000 km s’
line profiles similar

to stellar line profiles
dependence beyond the Lyman limit, down to X-ray wavelengths. In the optically thin
approximation, even when the spectral index is increased to a =3 in the ultraviolet and

0,0
0,0 01

Drew & Giddings (1982)

X-ray part of the spectrum, the mass-loss rate needs to be of the order of ~ 1000 M, yr?, if
the visual luminosity of the QSO is comparable with that of 3C 273. It is anticipated that, I Ilela N LR [0 LR &

not achievable in AGN!
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THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Radiation-driven disk winds: driving by resonance lines (Shlosman et al. 1985)

radiation force (Sobolev)
per unit volume summed
over lines (C, N, O lines)
AL optical depth in line |
depends on v-gradient!

disk corona thermally
unstable region

partial or full
obscuration

LD win

Shlosman, Vitello & Shaviv (1985)
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disk wind fits,

vertical velocity and But what about
line radiation force profiles |jne profiles?

00 (/70 1) , (normalized by gravity) 16



THEORY: INFLOWS AND OUTFLOWS IN AGN

*» Radiation-driven disk winds: driving by resonance lines (Proga et al. 2000) -

radiation force (Sobolev)
] per unit mass approximated
by force multiplier M(t)
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Proga et al. (2000) 17



THEORY: INFLOWS AND OUTFLOWS IN AGN

+» Radiation-driven disk winds: driving by resonance lines (Murray et al. 1995)
region of hitchhiking gas

Continuous wind = no clumps X-ray source )

Radiation force (Sobolev)
per unit mass approximated ——
by force multiplier M(t) 1 o

as in Proga et al. (2000) acoretion disk black hole

CIvV .
observed

CIlV line shapes
don’t fit....
geometry wrong?

18



THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Radiation-driven disk winds: driving by dust
color > gas T color = gas density

Single fluid approximation
—> no dust evolution

4310° yr

Radiation flux calculated
using flux-limited diffusion
approximation

Dorodnitsyn & Kallman (2012)

But do dust grains survive both the acceleration and
associated temperature? = need self-consistent treatment!

19



THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Theory: summary of MHD

Mass conservation

op pdd 1 aB? 1

Z- component of momentum P R R +—(B-V)B,
0z 0z &m 0z dm

conservation (Euler eq.)
Energy

Perfect gas

Ohm’s law

Induction

20



THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: magneto-centrifugal winds = Blandford & Payne (1982) solution (pgisk~ r~3/?)

Include inertia and assume MHD conditions
Stationary axisymmetric MHD flow P o® 1B 1

. Vv, =02 1B L (B.v)B
Euler equation o o o ano P

Self-similar solution PRGN AT S IACIICIN1¢IRMEC2) (I VIS

Solutions scale with spherical radius along a given
direction

Centrifugal acceleration (gas clouds on B-lines act as
“beads on a wire”): a wind Is launched when the
Inclination angle of magnetic lines to the disk is < 60°

After launch the flow is dominated by the toroidal
magnetic field imposed by rotation 2 (e

Collimation along the magnetic axis §

-
|||||| i
L=




THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: magneto-centrifugal winds = Blandford & Payne (1982) solution (pgisx~ r~3/?)
Disk winds: 2D - remove one degree of freedom - 1D ordinary differential equation

Self-similarity assumptions:
cylindrical z: pre-supposes a collimated vertical jet structure

cylindrical r:  accretion disk structure, not jets

spherical 0: spherical wind (NO collimation)
spherical r: only choice with equations that allow collimation

Blandford & Payne (1982): r-self-similarity; 0 structure same for every field line
reduces MHD to only two ordinary differential equations

r= [rof(l)a 9, ro)(]
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THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: magneto-centrifugal winds = merging radiation & MHD winds
generalized Blandford/Payne model (Emmering, Blandford & Shlosman 1992 solution)

Paisk~ T & B-field extracts angular momentum-> low M wind !

EMMERING, BLANDFORD, & SHLOSMAN

Electron-scattering corona widens the line wings

self-similarity of

XIS B-linesand r
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THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: magneto-centrifugal winds = merging radiation & MHD winds
Generalized Blandford/Payne model (Emmering, Blandford & Shlosman 1992 solution)

So, disk winds produce CIV emission line profiles

characteristic triangular for various inclinations to
shapes of emission lines Z-axis

in AGN - match as good
y as for spherical outflows!
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THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: magneto-centrifugal winds = reverberation mapping of BLR

Formation of the broad line region (BLR) C 1V emission line profile evolution
In Seyfert 1 galaxy NGC5548

echo mapping

All points on an
“isodelay surface”
have the same extra
light-travel time

to the observer,
relative to photons
from the continuum

source. M.N 3 x 107 M@

iSOdeIay Surfaces in Seyfert 1 galaxy NGC5548 - relative velocity anits of 10* km s
Bottorff, Korista, Shlosman & Blandford (1997) 25




THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: magneto-centrifugal winds
Formation of the broad line region (BLR)

rotation

aris

™ _observer
*, direction

=

i)
=
E
o

Fd

visible part of
the BLR -7 - /

r (light days)

Bottorff, Korista, Shlosman & Blandford (1997)
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THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: magneto-centrifugal winds
Multi-component warm absorbers in NGC 5548

observer’s orientation in NGC 5548

MODEL SOLUTION FOR THE
CoNTmNuoUSLY DISTRIBUTED
WARM ABSORBER IN
NGC 5548

Parameter log(value)*

17.75
20.59
6.455
2.253
21.76
15.94
14.70
15.13
17.94
18.22
—2.716

Z (light days)

* Values in cgs units.

Bottorff, Korista & Shlosman (2000)

Pl
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visible pattof ",
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0.0
r (light days)

warm absorbers




THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: The end of the torus paradigm (Elitzur & Shlosman 2006; Nenkova, Elitzur & Ivezic 2008)
IR radiation transfer in clumpy wind

o :
® Narrow Line
e » / Region
o

® o
s * Broad l’ .e
Regic .
" /
Black £ Accretion
Hole g Disk
Continuum Source ' . - : /
¢ IF
N\ B S |- Obscurir
~—T min—— Elecvoi. Torus
Scattering - \ )
Corona

Broad Line Reglo)n

Toroidal Obscuration region is
an outflow and It disappears
at L <10% erg/s !

Warm Eﬁbsprber'
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THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: collimated MHD winds - jets

Accretion disk-driven jets

E
B
T
E
a
=
e

\ magnetic lines

Accretion disk driven jets = velocity distribution
at the wind base is that of a Keplerian disk
Blandford & Payne model: inertia—> poloidal B> toroidal B
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THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: emission mechanism in jets = synchrotron radiation

If electrons are moving at v~c > radiation Is beamed

Particle moving with Lorentz factor y toward observer emits
Into cone of opening angle & ~ y~1

,A' ‘W\ — > To observer
4 N\

We only see radiation from a small portion of the orbit, g
when the cone points toward us
—> but many electrons!

30



THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: collimated MHD winds - jets
Alternative acceleration mechanisms:

Twin-exhaust scheme
(Blandford & Rees 1972)

Radiation pressure in accretion funnels
(FRT 1985)

Electrodynamic effects in accretion funnels and
Poynting flux jets
(Lovelace 1976, Blandford 1976)

Magneto-centrifugal acceleration
(Blandford & Payne 1982)
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THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: collimated MHD winds - jets

Alternative acceleration mechanisms: tapping the rotational energy of black hole
Blandford & Znajek (1977)

Blandford and Znajek(1977) found a stationary solution
for monopole magnetospheres of slowly rotating black holes. It exhibited
outflows of energy and angular momentum

Black hole rotational energy (a =1): IZ5ESNoReieNY ey 1054(

Power of the 2
Blandford-Znajek mechanism: I Aaac kR R (el () (

y Event horizon
' 2Mes )
a - spin parameter of the black hole (0 <a < 1),
Y - the magnetic flux of black hole.
¥ =10%"G cm? is the highest value observed in magnetic stars:
Ap, white dwarfs, neutron stars (magnetars).

Ergosphere

a|oy Mae|q 1M

Efficiency of Blandford-Znajek mechanism ?
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THEORY: INFLOWS AND OUTFLOWS IN AGN

¢ Outflows: collimated MHD winds - jets
Tapping the rotational energy of black hole: Blandford & Znajek (1977)

What is the condition for activation of the BZ-mechanism with finite
Inertia of plasma?

MHD waves must be able to escape from the black hole ergosphere !?
Alfven speed v, > v, free fall

Apply at the ergosphere, ‘ B2> 4mpc
r = 2r= 2GMIC?

The energy density of magnetic field must exceed
that of
matter for the BZ-mechanism to be activatzd!

33



OBSERVATIONAL EVIDENCE
FOR INFLOWS AND OUTFLOWS IN AGN

Evidense for inflows:

To be discussed on Thursday
as a FUELING issue
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CONCLUSIONS FOR LECTURE 3

¢ Active Galactic Nuclei (AGN) are powered by accretion processes, but there are clear
and objective difficulties to detect this accretion flow

¢ On the other hand, UV and some X-ray emission and absorption lines point to powerful
and diverse outflows from the accretion disks in AGN

¢ There Is a clear preference, both observationally and theoretically to the presence of accretion
disks in AGN, as opposite to spherical outflows

“* MHD winds have preference over radiation-driven winds in AGN, because they are capable
of extracting angular momentum, which radiation is inefficient in this process

“* MHD is probably collimates some of the wind into powerful jets, sometimes relativistic

35
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