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Feedback: radiation, mechanical

Coexistence: supermassive black holes and their host galaxies




AGN AND HOST GALAXIES: FUELING AND FEEDBACK

Active Galactic Nuclei : live in galaxies! No isolated AGN!

This means, AGN evolution can be affected by galaxies, and, in return,
they can affect evolution of galaxies = feedback



WHAT BRINGS FOOD TO YOUR TABLE?




WHAT FEEDS AGN?




HOST GALAXIES OF AGN

Where do AGN live?

Do AGN galaxies are special?
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WHERE DO AGN LIVE?

In galactic centers - why?

\

they been born there they migrated there * R,
WHY? HOW? ' .
\ SMBH was born there galaxy mergers 4/
plenty of food! what else could we do?

(and there Is plenty
of food there!)



THE CENTRAL ENGINE OF AGN

Supermassive black holes (SMBHSs)



THE CENTRAL ENGINE: THE VIEW

Narrow Line Region
Clouds

Broad Line Region
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WHAT DO AGN EAT?

stars: whole and ‘
digested

compact objects:
white dwarfs

neutron stars i,
BHs, SMBHSs Nl

gas, gas clouds: gas accretion

Black holes eat everything
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AGN FUEL SOURCES

¢ Tidal disruption events (TDEs): stellar disruptions by SMBHSs

When a wandering star finds itself within

It is tidally disrupted

For solar type star

ZGI\/I
B for Mg, <10°Me

c’

‘ ) star Is ripped apart once
Rate of TDEs ~ 104-10° yr-gal* the BH*s tidal forces exceed

g. Magorrian & Tremaine 1 )
(6.0 Magorrian & Tremaine 1599) the selfgravity of the star
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AGN FUEL SOURCES

¢ Tidal disruption events (TDEs): stellar disrruptions by SMBHs

(Rees 1988; Phinney 1989; Evans & Kochanek 1989)
Disruption 4 '
the

Fall-Back )

Circularization and

= . B e Accretion
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---------------------------------------- fallback ~ 0AY'S

~halfhas € > 0 unbound: hyperbolic trajectories
~halfhas ¢ < (0 bound: elliptical orbits

> After passing nozzle, gas collides with

I incoming part of itself (GR precession)
—> shock
Keeps hitting itself as it orbits around
the SMBH shrinks
—> orbit circularization

\93/ I
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AGN FUEL SOURCES

¢ Tidal disruption events (TDEs): post-disruption “flares” in UV/optical/X-ray bands

. A ; —5/3 F
Mianback ~
Lfallback \ Zfallback

T T T T T T T T

10°F /\ 1 1

super-Eddington
fallback rate

Gezari et al. 2008

\GALEX: UV

;hh‘_ Chandra

L =
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Magnitude

= 10" ‘\3 3
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§ v1¥ ", CFHT: optic4l
L0 e R to : ~10 Candidate Detections so far by
- s;:alTl-bEac(l:?{i?g:gn 2004 2005 2006 2007 20t ROSAT A“-Sky Survey (Komossa 2002)
Pt ‘ Year XMM Slew Survey (Esquej et al. 2007)
ToEL|E e . Galex Deep Imaging (Gezari et al. 2009)
| 10 107 10° 0 = SDSS Stripe 82 (van Velzen et al. 2010)
t (days) quiescent flare begins PTF (Cenko et al. 2010)
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AGN FUEL SOURCES

¢ TDEs: detected X-ray flares

Enormously powerful outburst of X-ray radiation from
several galaxies
Normal, inconspicuous, non-active galaxies

NGC 59056 [ ]
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nnosa-oQeERsO

1994 ‘ 1998
time (yrs)

RX J1242.6=1119A
HE Mgl Nal

I
T
] /

4000
Rest Wavelength, A (&)

“I'b
—
i
g
-h
t
Skn
e
s
s
2 [t

wavelength (%)

X-rays dropped by factors up to 6000, years after the peak
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Swift J1644+57 gone MAD: the case for dynamically-important
AGN FUﬁL SO ' IRCES magnetic flux threading the black hole in a jetted tidal disruption

event

0:0 TDES detected X-ray 'ﬂares Alexander Tchekhovskoy!*, Brian D. Metzger®, Dimitrios Giannios®, and Luke Z. Kelley*
Super-Eddington TDE Swift J1644+57

X-ray curve measured
by Swift and Chandra.

b
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|
[
=
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[l T S S L ~ 2x10%" erg/s
10" 10! 10° ik M. ~105M

Days since trigger, t — fi5, O,
Tchekhovskoy et al. (2014)

—> Swift + Chandra light curves
—> L corrected for beaming
—> Radio “re-brightening after ~ 4 months T




BY-PRODUCTS OF TDEs v AGN

¢ Tidal disruption events (TDEs): jets?

Where there Is an accretion onto BHs - there are jets _
Jet of high-speed

A substantial fraction of gravitational (accretion) energy \ PRRiEs
may be channeled into relativistic jets R \eaneticiig

'I —_—
—> non-thermal signatures from TDES pan—

Accretion
disk

. . . . . ' __1*{
jets in galactic centers stellar binaries s



BY-PRODUCTS OF TDEs v AGN

Tidal disruption events (TDESs): radio-transients = jets? (Giannios & Metzger 2011)

ICIOVACICESEV E  ~ 0.1M__c? ~10% erg

c.
_ 1051 Jet er
1 g

EreI
0.0

E.~¢

jet

energy in jets je
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AGN FROM GALAXY MERGERS

¢ Galaxy mergers - SMBHs mergers > SMBH pairs 2 NGC 6240

. : When galaxies merge

. - their SMBHs merge
—> gravitational torques
—> gas channeling inward

Does this means AGN
are only triggered in
mergers? > No !

Maybe 20 % are,

N
ray image . what about the rest?

red: low energy
blue: high energy
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AGN FROM GALAXY MERGERS

¢ Galaxy mergers - SMBH mergers = detection

Future prospects:

detection of gravitational waves from the
merging black holes

.

R *‘\ 2 By 0 B //,-4_“\\ -
r-a \ O e -

( \\\ K _,/:L = /} ( >//7 \?f\\
Q==L /)
'y S - v /__‘
N, . - / //_/
N\ T—————4/
N/ %/ e 7\’ / (// 7 L

'ﬁi::j% AK—T > L,

gravitational waves from merging SMBHs:
to be detected by LIGO and LISA

LIGO Hanford beam tube |
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ACCRETION ONTO GALAXIES

« Leftovers for SI\/IBHs’> ok | | ’

o

Accretion rate onto the galaxy during formation:
3

el | .
g 200 (100km/s) M@yr '~ 125Mg

Roma}lé'—Diaz, Shlosman, Choi & Sadoun (2014) 21



TOO LITTLE FOOD IS BAD,
TOO MUCH FOOD IS WORSE

Mass-Transfer Induced Activity in Galaxies
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ACCRETION ONTO GALAXIES

“* How to get the gas to the center: feeding the SMBHSs

Using galactic morphology and gravitational torques

Bars are strong, stable, bi-symmetric perturbations

of axial symmetry: A g i

F, /F. ~ 100 %

bars trap stellar (or gas) orbits: they are self-gravitating

NGC 1300
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»Bar fraction with z »Bar strength with z

_ _ . Bars at z=0.2-0.7: __
Bars at z=0.2-0.7: | < 600 } ~ '
Bars at z=0.7—1.0: _ __ __ Bars at z=0.7—1.0: ____

| < 60°
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Proportion of bars |%

Bar semi—major axis a (kpc

GEMS: GOODS (HST) (Jogee, Barazza, Rix, Shlosman & GOODS Team 2004)
+ COMBO-17

Large (a>1.2 kpc) strong (e>0.4) bars: no evolution with z2 30% + 6%
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WIEAIaNOWIE EREARE BARSH

> Bar fraction with z:

COSMOS survey (Sheth et al. 2008)

Large (a > 2 kpc) bars
In massive disk galaxies:
constant with z,

In low-mass blue spirals i< 650 i< 65°
decline for z> 0.3 | '

weak bars strong bars

Overall: Jogee et al. (2004) and Sheth et al. (2008)
= weak decline of ~2 between z~0.2-1
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THE ORIGIN OF BARS?

Stellar bars forming as
a result of the bar instability?

Numerical convergence study:

DM halo: N=10K - 108->10%0
Disk: N=1.8K - 1.8 x 10/

Disk 1.8K Halo 10K Disk 18K Halo 100K Disk 180K Halo 1M

Slwils

Disk 1.8M Halo 10M Disk 18M Halo 100M Disk 18M Halo 100M muli

t=7.05 Gyr

Dubinski, Berentzen & Shlosman (2009)

animation
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] YT blue: 0-0.2 Gyr
Tidal origin of . _— ! — | ‘ lueish: 0.2-2 Gyr

stellar bars?

z 0218 3o 0LA43Y R Czoorasyc U z 01198

z = 00 B0Y z = 0020 z = QOO

z — 00 148 z. — 0008 z = 00.066 z = Q005 z = 00000

Romano-Diaz et al. (2008)
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WHAT BARS CAN DO?

> Gravitational torgues
disk My inside spherical DM halo M,, subject to m=2 perturbation:

T ~ G( 62)2 R3 torque from the perturbation
J(<R)~ R°X Vo angular momentum in the disk

T, ~ T~ (M/M,)(E/ 8E) 1, |

timescale
X/0X~0.01 spiral arm

YoX~1 bar
effective gravitational viscosity:

}“max "‘GZ/QZ - ~;“max/ orb

) . U"‘I”E ,,‘l:? D) .
If gas present - torque from stars on gas: REEEE. [ L A "T“‘tr ﬁl“t‘ﬁ—ﬂ]r drd¢
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WHAT BARS CAN DO?

»Bars drain angular momentum from the gas
NGC 5248

MODEL

DATA

-

gas inflow

!

nuclear starbursts
at ~ 1 kpc

growing bulge:
exponential n < 2,
In contrast to
“classical” bulge
with n > 2

*fueling SMBH ?
(SFB89; Englmaier & Shlosman 04)
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WHAT BARS CAN DO?

» Nested bars: bars-in-bars mechanism theoretical perspective

How do nested bars form?
Are nuclear bars secondary and triggered by the gas inflow?

secondary (stellar/gas) bar

(-}

primary (stellar/gas) bar
(Shlosman, Begelman & Frank 1988/1989/1990)

Can be in dynamically coupled (co-rotating)
and decoupled (tumbling with different speeds) states

NGC 5728
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GAS INFLOW WITH NESTED BARS

» Nested bars: Inner gas bar
» —> avalanche type inflow

Peter Englmaier Isaac Shlosman
Astronomisches Institut  University of Kentucky
Uni Basel, Switzerland USA
S

UNIVERSITY
OF KENTUCKY

astro.unibas.

Ap] Letter 2004
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GAS INFLOW WITH NESTED BARS

» Nested bars: inflow rates

across inner 175 pc

p=
—_—
i
v
u—
@
S
=
O
—
-
=
L]
i8]
[}

across inner 1 kpc across inner 600 pc

Englmaier & Shlosman (2004)
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WHAT BARS CAN DO?

»Bars — the universal channel used by nature to get rid of
angular momentum in order to reach lower energy
configuration

Bars = prime internal drivers
of dynamical and secular evolution in galaxies
and fueling various processes
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AGN FEEDBACK

“ AGN energy input: reducing star formation rate

Galaxy luminosity function (LF)
differs from dark matter halo
luminosity function for low-mass
and high-mass galaxies

N\

AGN
feedback

Supernova
feedback

A Primary Challenge for the
Theory of Galaxy Formation

= - e e e
— o .
-

Local galaxy
luminosity function

10°F %,
—— Blanton et al. (2001) LF =X
10* 3 - — - Blanton et al. (2003) LF | —
= 1?_ 1
N P IS N S B | R B
-14 -16 -18 -20 22 -24
low M. M [Magnitudes] hlgh \V/

1 Deficit of faint galaxies
4 relative to low-mass DM

halos.

1 Supernova-driven winds?
1 Photoionization?

i Suppression of small-scale
i power?

1 No current method provides
1 a convincing solution.
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AGN FEEDBACK

“* Radiative energy input: driving winds

lonizes the host ISM and cluster IGM
—> decreasing star formation

This negative feedback affects the galaxy
luminosity function (LF), especially the high end
chandra
It drives galoactic winds and expels
the chemically-enriched material into IGM

Comparable mechanical energy frpom AGN jets
In clusters of galaxies

Exon ~ Lagy tagy ~ 102 Lg 107 yr ~ 109 erg

E ~ M_L;ral V,c_ralj ~ 1012 M@ (200 klll/S)z ~ 1090 er g

bind.gal.

Multiwavelength view of the starburst galaxy M82
Yellow-green/optical HST; orange - 10* K H gas;
red/Spitzer-> cold gas/dust; blue/Chandra

NGC 253:
warm and hot
- wind by ALMA
and galalactic disk
by 2MASS JHK
image
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AGN AND SUPERNOVA FEEDBACK

hierarchical

growth :
galaxy normal galaxies

mergers < (dead quasars)

oas galaxy formation AGN
inflows and evolution feedback

buried quasars quasars
growth of

supermassive black holes

35



AGN FEEDBACK

¢ Observational challenges

Feedback on galaxy clusters scales is more easily observable
(larger physical scales, denser atmaospheres, brighter diffuse
emission from the hot gas In the X-rays)

Feedback on galactic scale is hard to resolve

Galaxies experience most of their growth at earlier times than
clusters (in a hierarchical Universe)

Dust extinction in the region of interest obscure both AGN and
star-formation
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CONCLUSIONS TO TALK 4

¢ Accretion on SMBHs involves a wide variety of processes = from tidal disruption of stars
to smooth accretion from gaseous disks

< Different accretion rates and mechanisms result in different energy-to-radiation
conversion efficiencies = but we still don‘t know where is the main reservoir of fuel that
powers AGN

¢ Accretion onto SMBHs is associated with various types of mass and energy ejection:
radiation, mechanical energy, accretion disk winds, etc. = this provides a powerful
feedback to evolution of stars, galaxies and galaxy clusters

¢ Presence and properties of SMBHs are intimately linked to the formation and evolution of
galaxies in the universe. Two processes long predicted by theory recently observed:

> Disruption of stars by SMBHSs at centers of several galaxies - appear as spectacular
X-ray flares, abd provide completely independent route to find and study BHs and
their environment

> Active pairs of SMBHSs, merging BHs in nearby galaxies have been detected

< Two main ingredients for AGN phenomenon: SMBHSs and fuel delivery mechanism
(internal and external) = these machanisms are based on gravitational and magnetic
torques
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