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Gas: hydrostatic equilibrium 

( )drrρrπ4
r
M(r)G 2

2The downward gravitational force 

Outward pressure force dr
dr
dPrπ4 2

( )rρ
r
M(r)G

dr
dP

2−=
r --- radius vector 
M(r) --- mass within r 
ρ(r)  --- mass density 
P(r)  --- gas pressure at r 



Definitions: find force or potential field of a stellar distribution 

Describe mass distribution as a continuous function  

In a 1-D system: always possible to define potential energy U(x) 
corresponding to any given force f(x):  

( )∫−=
x

x0

x'fdx'U(x)

where x0  is arbitrary position at which U=0.  The choice of x0 does 
not affect the dynamics 

Gravitational potential is the gravitational energy per unit mass 

Φ(x)mU(x) =Hence, gravitational energy of mass  m  is 

Uf(x) ∇−=


Note, that because  U depends on the endpoints only: 

integral over closed path 
vanishes 

conservative field 



gravitational force:     vector field 

In multi-dimensional space: 

For an arbitrary density distribution: ( ) rr'/)dM(r'GrdΦ −−=

(2-1a) 

(2-1b) 

0 r’ 
r M - mass 
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Remember: divergence of a vector 

Gauss Theorem (for gravity) 
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Taking divergence of  eq.(2-1b): 

Note, in 1-D this is trivial (spherical): 
dF = - G dM(r)/r2   = - 4 π G ρ (r)dr 

Φ∆−≡Φ∇−=ρπ−=∇ 2)r(G4F

But in 3-D, you should remember that 
(gradient) 3'

'
'
1

rr
rr

rr −

−
=











−
∇r

and (divergence): 

0
'

)'()'(3
'
3

'
'

533
=

−

−⋅−
+

−
−=


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













−

−
⋅∇

rr
rrrr

rrrr
rr

r

cancels  

rr ≠'when

Laplace eq. (outside M)  

Poisson eq. (inside M) 

product 
rule: 



So, to take the divergence of F(r): Fr •∇

⋅∇r ⋅∇r



So, the only contribution to                  comes from the point  r’ = r   Fr •∇

Take a small sphere with radius |r’-r|=h  centered on this point: 

where (on the surface): |r’-r|=h  and 

r  r’ 

Divergence theorem: 
to replace volume  
integral by integral 
over enclosed surface 

Poisson eq. 



Note, relationship between Φ and ρ  are linear 

For volume  V  with a surface  A  enclosing mass  M 

Application of Gauss Theorem 

application of Gauss theorem 

The potential energy  W  of self-gravitating system can be defined 
by setting Φ  = 0  at infinity, and    

So,  W < 0  always 

(2-2) 



 
Density-potential pairs 

Consider potential for an arbitrary spherical mass distribution:   

Point mass (Keplerian potential) 

2r/GMdr/d)r(F −=Φ=Φ∇−=

Φ(r) = - GM/r 

vc
2(r) = GM/r = - Φ (r)         circular velocity 

vesc
2(r) = 2GM/r = - 2Φ (r)   escape velocity 

Uniform spherical shell 
Outside: Φ (r) = - GM/r  (Keplerian)   
Inside:  Φ (r) = const.; F(r) = 0 

∞==−=Φ ∫∫ 02 ,
'

)'(')(')(
00

rwith
r

rMdrGradrr
r

r

r

r

with the enclosed mass 
)'r('r'dr4)r(M 2

r

r0

ρπ= ∫

  Φ (r) < 0  
everywhere 
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Homogeneous (uniform) sphere 

             const       for  r < a 
ρ(r) =  
             0             for   r > a 

outside:  Φ (r) = -GM/r   (Keplerian) 
inside:   Φ (r) = -2πGρ (a2-r2/3) 

Fr = - GM(r)/r2 = - (4/3) πGρr 

So,   k/m = (4/3) πGρ = ω2  and  Pr = 2π/ω                       
 
      radial period of oscillations      Pr = (3π/Gρ)1/2 

      and  free-fall time                     tff  ~ (1/4) Pr ~ (Gρ)−1/2 

vc(r) = ω r = [(4/3) πGρ]1/2r 
We define Ω(r) = ω  (= const  in this case)  solid body rotation 

Note that Pc = Pr 

harmonic oscillator 

Because Fr = v2/r 



Logarithmic potential 

We know that many rotation curves are flat at large radii, vc  ~ v0, so 

meaning that potential behaves as logarithmic… 

Spherical systems 

For power law:  ρ  =  ρ0 (r/a)-α  we have: 

Φ(r) =  -[(4πGaρ0)/(3−α)] (r/a)2-α = vc
2/(α-2) 

•for  α > 3,  M(<r)   infinity for r  0   infinite mass at  
                                                                        the origin 

∞==Φ ∫ 02 ,
'

)'(')(
0

rwith
r

rMdrGr
r

r



•for  α = 2, we have singular isothermal sphere with circular velocity  

vc(r) = (4π G a2  ρ0)1/2 = const.  at all radii, 

yielding  Φ(r) = 4πGa2ρ0 ln(r/a) 

More specific spherical models 

•Hernquist 

•Jaffe 

•Plummer sphere 



ρ (R)  for  
various  
spherical  
models 



Axisymmetric thin disks (cylindrical r, z) 
•Vertical (z) potential near the plane  z = 0:  
within the disk:  ρ0  the volume density at the z = 0 plane 

above the disk:   
surface density  Σ(z)  

Using the Gauss theorem, eq.(2-2): 

Note, unlike spherical potentials,  
disk potential depends on the mass outside  r 

( )aboveG2
)inside()z(G2zG4g

z 0z

Σπ=

Σπ=ρπ==
∂
Φ∂

−

∫
∞

Σ=Σ
0

)z(dzwhere
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Examples:  

•Mestel disk:  Σ(r) = Σ0 r/r0 

drrer /
0)( −Σ=Σ

has    vc
2(r) = 2πGΣ0r0 = GM(<r)/r 

unusual case when vc is independent of M(>r) ! 

•Exponential disk: 

fits the light profile in a much more realistic way than Mestel disk, 
and has circular velocity (see analytical approximation we used!): 

where  y = r/2rd, and  
           In,  Kn are Bessel functions of the 1st and 2nd kind 



•Kuzmin-Toomre disk: 

Note, because Poisson equation is linear in ρ, Φ: 
          differences between density-potential pairs and 
          differentials of density-potential pairs are also ρ−Φ pairs 

•Toomre disk sequence: of order  n  can be obtained from 
  the above Kuzmin disks by differentiation with respect to a2: 

•Bessel disk: )kr(J)zkexp()z,r();kr(J
G2

k)r( 00 −=Φ
π

=Σ

Here n=1  Kuzmin disk; n=infinity is Gaussian disk 



Axisymmetric flattened systems 

Realistic  bulge + disk, etc. systems are neither spherical nor thin disks 
Combining both we get flattened potentials 

•Miyamoto-Nagai flattened system:  

If  a = 0, we get Plummer sphere, 
and 
if  b = 0, we get Kuzmin disk 



*illustrations 
*general case 
*mass determination 
*binding energy 
*specific heat: gravothermal catastrophe 

The virial theorem 



Illustrations  

Circular orbits 
Consider the mass  m  in a circular orbit  
around M  (>> m) 

2

2

r
GmM

r
mv

=

Multiply by r: 

0W2KorW2K
r

GmMmv2 =+−====>=

2K -W 

Define the ratio  1/2WK/η ==

E = -K,   where 
E = K+W  the total energy 

Note, that in this case instantaneous value is also time-averaged value 

20 

v 



Time-averaged Keplerian orbit (elliptical orbits) 

In general,  η changes along the Keplerian orbit  

Example:  compare the pericentric, ηp, and apocentric, ηa, values: 

1
r
r

rv

rv
η
η

p

a

a
2
a

p
2
p

a

p ≠==

using  rpvp = rava  (angular momentum conservation) 

Taking time averages over an orbit: 

<-W> = <GM/r> = GM /<r> 
and  <K> = <0.5v2> = GM/2<r> 

η = 0.5 
E = -K 
(as before)  

 
Note, that time averages for a single non-Keplerian orbit do not usually 
have  η=0.5.  But this always holds when averaged over all the particles.  
        Above,  m  and  M form the whole system, with K=0 for M. 

ra 
rp 



General case 
Consider a cluster of  N  stars with time-dependent potential Φ(r, t). 
Individual energies are not conserved but the total E is. To show this, 
we write the 2nd law of Newton: 

)(
mGm

)m(
dt
d

ji
j

3
ji

ii ji

ji

rr
rr

v −
−

−= ∑
≠ mi  cancels out 

Next, take the scalar product of this equation with vi: 

iji

ji

i vrr
rr

vv ⋅−
−

−==⋅ ∑∑
≠

)(
mGm

K
dt
d)m(

dt
d

ji
j,i

3
ji

ii
i

Repeating the same procedure with a star vj: 

jij

ji
j,i

3
ji

jj
j

j )(
mGm

)m(
dt
d

2
1 vrr

rr
vv

ji

⋅−
−

−=⋅ ∑∑
≠

Adding the right-hand sides of eqs.(2-4) and (2-5) 

(2-3) 

(2-5) 

(2-4) 



Adding the right-hand sides of eqs.(2-4) and (2-5) 

.)()(
,,

3 













−
−=+⋅−

−
− ∑∑

≠≠
j

i

ji
rr

vvrr
rr i

ji

ji
ji

jji

ji
ji

ji mGm
dt
dmGm

This is equal to 2W: 

.dV)()(
2
1or)(m

2
1mGm

2
1W

i
i

ji
j,i

ji rrr
rr i

ji

ΦρΦ=
−

−= ∫∑∑
≠

Note:  
division by 2 means that  
each pair will contribute one term only to the sum 

Adding eqs.(2-4) and (2-5): 

.0
mGm

2
1K

dt
d2

ji
j,i i

ji =
















−
− ∑

≠
jrr E = K + W = const 

(2-6) 



According to eq.(2-6):  
the stars in an isolated cluster can change their kinetic and potential 
energies, as long as their sum remains constant  

The Virial Theorem: 
on average, the kinetic and potential energies are in a specific balance 

.rFr)r(r
rr

r)v( i
i

i
extiji

ji
ji,

3
ji

i
i

i ⋅+⋅−
−

−=⋅ ∑∑∑
≠

ji
i

mGm
m

dt
d

Proof: 

Start again with eq.(2-3), with an addition of an external force  Fext. 
Next, take scalar product with ri  and sum over all stars: 

(2-7) 

)(
mGm

)m(
dt
d

ji
j

3
ji

ii ji

ji

rr
rr

v −
−

−= ∑
≠



.
mGm

m
dt
d ji

j j
j

j
extjij

ji
ji,

3
ji

j
j

j rFr)r(r
rr

r)v( ⋅+⋅−
−

−=⋅ ∑∑∑
≠

A similar equation would result if we started with the j-force: 

The left sides of these two equations are the same; each equal to 

,K2
dt

Id
2
1m)m(

dt
d

2
1

2

2

i
iii

i
ii2

2

−=⋅−⋅ ∑∑ ivvrr

where I is the moment of inertia of the system:  

∑ ⋅≡
i

iimI irr

(2-8) 

Averaging eqs.(2-7) and (2-8): the first term on the right-hand side 
                                               is the potential energy W, so 

i
i
ext rF ⋅+=− ∑

i
2

2

WK2
dt

Id
2
1 (2-9) 

)r'r'2(rr"(rr)" +=
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Taking long-term average of eq.(2-9) over time interval  0 < t < τ: 

.WK2)0(
dt
dI)(

dt
dI

2
1

i

>⋅<+><+><=







−τ

τ ∑ i
i
ext rF

As long as the stars are bound to the cluster, the products |ri . vj|, 
and hence |dI/dt|, never exceed some finite limits 
Thus, the left-hand side of eq.(2-10) must tend to zero as τ−>∞, 
giving: 

(2-10) 

.0WK2
i

=>⋅<+><+>< ∑ i
i
ext rF the Virial Theorem 

Note: one can distinguish two types of kinetic energy: 

-- total K 

-- ordered motion 

-- random motion 



ALSO:  when the total energy is negative, the self-gravitating system 
             is bound 

Reviewing conditions for Virial Theorem: 

•The system must be self-gravitating 
•The system must be in steady state:  
                    orbital timescale << evolution timescale 

•Quantities must be time-averaged  
  (or many objects sampled with random orbital phase) 
•The system must be isolated,  
  or at least embedded in a slowly varying potential 

•The system can be collisionless (stars) or collisional (gas) 



Mass determination 

The most interesting use of the virial theorem is mass determination 
of stellar systems 

For a system of total mass M and mean squared velocity <v2>: 
 
                                   K = 0.5 M <v2> 

g
2 GM/rW/Mv ≡−=>< defines the gravitational radius rg 

But stellar systems don’t have sharp edges! 

Define “median radius”  rh which encloses half the mass. 
For many systems rh ≅ 0.4 rg, then 

0.4G
rvM h

2

tot
><

≅



Binding energy 

System which is spread out and at rest has  E = K = W = 0 
After settling down (virializing):  E = K+W = -K 

•Energy must be released during the gravitational collapse 
•This energy is termed the binding energy – it is needed to  
                                                                unbind the system 
•The value of the binding energy is equal to the remaining K 
•The total gravitational energy released is  -W, of which half 
  goes into K and half escapes the system  



Examples: 

•Collapsing protostars are luminous:  they radiate half of their 
                                                          gravitational potential energy 

•Kelvin considered a gravitational origin of Sun’s energy, 
  via gradual contraction 

•For a ‘typical’ galaxy:  K ~ 0.5 Mvc
2 ~ 1057 ergs ~ 1010 L8 x 107 yrs 

this is 3 10-7 of the rest mass  (this is negligible!) 
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Specific heat of self-gravitating systems 

Define the temperature T of self-gravitating system (of N stars) 
by analogy with the ideal gas 

Tk
2
3vm

2
1

B
2 =><

where  m  is the stellar mass 
            kB  is the Boltzmann constant 

We use spatially averaged  v2  and  T,  for example: 
dV)(/dVT)(T ∫∫ ρρ≡>< rr

The total kinetic energy is then  K = (3/2) NkB<T> 
Using virial theorem:  E = -K, and  E = -(3/2) NkB<T>. 

The heat capacity of the system is !!0Νκ
2
3

Τδ
δΕC Β <−=

><
≡

Note, by losing energy the system gets hotter! 

Note: <v2>=3σ2 



Energy decreasing “Temperature” increasing 

Negative specific heat: by losing energy the system gets hotter 



•Any self-gravitating bound system has a negative heat capacity: 

stars, stellar clusters, galaxies, galactic clusters, etc. 

•Thermodynamically, such systems exhibit counter-intuitive behavior 

Example:  
a bound self-gravitating system in contact with a heat bath 

•Initially: thermal equilibrium at  T.  How stable is this equilibrium? 

•By transferring a small amount of heat dQ > 0 to the bath, 
  the stellar system will change to  T – dQ/C = T + dQ/|C| 
•The stellar system is now hotter than the bath and 
  heat continues to flow from hot (system) to cold (bath) 

•Such system is thermally unstable and experiences a thermal runaway 

Note:  <v2>=3σ2  for isothermal sphere 



Gravothermal catastrophe:     Antonov (1962) 
                                                             Lynden-Bell & Wood (1968) 

Adiabatic wall 

rb 

Self-gravitating  
N-body system 

mass：M=N×m 

energy：E 

radius：rb 

(perfectly reflecting boundary) 

Consider: 



Tcore > Thalo  

∆Tcore↑ 

∆Thalo↑ 

∆Tcore > ∆Thalo  

Heat flow 

core halo 

core = self-gravitating  

halo = normal system 
            (heat bath) 

Core-collapse !! 

Gravothermal Catastrophe 

Negative specific heat 

Positive specific heat 

0C <

0C >

0C >

0C <

Heat flow from  
core to halo 

re > rb 

0C <

extended halo has large heat capacity 

heat flow does not stop!! 
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Onset of instability: heuristical approach: 

Halo:  Ch>0 since no strong self-gravity  
Core:  Cc<0 since confined by gravity 
If  sudden core heat up  Tc>Th : heat flow from the core to the halo 
                                                      and the temperatures of BOTH rises 

If Ch<|Cc|,  Th = dQ/Ch rises faster than Tc = dQ/Cc the heat flow shuts off 
If Ch>|Cc|,  Th rises slower than Tc   the difference increases 

The gravothermal instability sets in at R (= ρc /ρboundary) = 708.61 

Is there an instability in the real systems 
(stars and gas)? 
•The gravothermal catastrophe in a gas:  
  develops through heat conduction,   
  growth time ~ thermal diffusion time 
•In stellar systems:   
  thermal diffusion is ~ relaxation time 

Simulation of 
gravothermal  
catastrophy 
in GC 



About 20% of globular clusters show cuspy cores 

Surface brightness for globular clusters: evidence for core collapse 
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