GRAVITATIONAL
POTENTIALS

*definitions and Gauss Theorem
*density-potential pairs
*spherical potentials
*axisymmetric potentials
*triaxial potentials




» Gas: hydrostatic equilibrium

The downward gravitational force

Outward pressure force

dP  GM(r)

e

I

2

i grawvity

r --- radius vector
M(r) --- mass within r
p(r) p(r) --- mass density

P(r) --- gas pressure atr



» Definitions: find force or potential field of a stellar distribution
Describe mass distribution as a continuous function

In a 1-D system: always possible to define potential energy U(x)
corresponding to any given force f(x):

U(x) = — de'f X" Integral over closed path
¥ xj ( ) j> vanishes

where X, Is arbitrary position at which U=0. The choice of x, does
not affect the dynamics

Hence, gravitational energy of mass m is [SICSERuLJ3

Note, that because U depends on the endpoints only:

f(x) = -VU j> conservative field




In multi-dimensional space:

gravitational force:  vector field
o dM(r')=pd°r'
r M - mass /

dd(r) = -G dM(r') /[r'~1]

(2-1a)

(2-1b)




*»Gauss Theorem (for gravity)

Remember: divergence of a vector

Divergence of A =divA=V-A
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Taking divergence of eq.(2-1D): [ofSE. TE e / C ) dr

o v |I" _ I‘|3

ol

—4d7 G p(r)
InGp(r) < ERSTIIeT eq. (inside M)

el [aplace eq. (outside M)

Note, in 1-D this is trivial (spherical):
dF =-GdM(N/r* =-4 1 G p (r)dr

But in 3-D, you should remember that
(gradient)

and (divergence):

duct " 3 3Ar'—r) . (r'—
el | - 2 Ao gy
U U




So, to take the divergence of F(r): Nkls




So, the only contribution to comes from the point r’=r

r'-r

3
v, OF:Gp(r)Lr._rKth B
| r'=r|
’ r'_r 3 v
r=>r’ ) = —-Gp(r) _— V. 3dl':
Ir'—rl
Divergence theorem: r'-r onS'
to replace volume = — G,O(l‘) ( ) 3 —
integral by integral ' r|=h | r'-r |

over enclosed surface

= Gp(r)J‘ d?Q =— AxGp(r) Poisson eq.

where (on the surface): [r’-r|=h and  d°S=("1)h d’Q



» Application of Gauss Theorem
Note, relationship between ® and p are linear

For volume V with a surface A enclosing mass M
(2-2)

Gaussian
surface

AnGM = d=nG / p(r) d’r
JV

/ —V - F(r)d°r
Jv

application of Gauss theorem

The potential energy W of self-gravitating system can be defined
by setting @ =0 at infinity, and

So, W< 0 always



» Density-potential pairs
Consider potential for an arbitrary spherical mass distribution:

CD(r)——jdr a(r)_G_[dr M( ), with 1, =00 e 4 (D(L)<O
everywnere

with the enclosed mass r
M(r) = 4z [dr' 1 p(r")

“*Point mass (Keplerian potential)
d(r) = - GM/r
F(r) = -V® =d®/dr =-GM/r?

v2(r)=GM/r=-® (r) circular velocity
V...2(N) = 2GM/r = - 2® (r) escape velocity

esc

“*Uniform spherical shell
Outside: @ (r) = - GM/r (Keplerian)
Inside: @ (r) =const.; F(r) =0
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“*Homogeneous (uniform) sphere

const for r<a
p(r) =

0 for r>a

outside: @ (r) =-GM/r (Keplerian)
inside: @ (r) = -2nGp (a%-r4/3)

MO ) R

So, k/m = (4/3) nGp = »? and P, =27/®

radial period of oscillations P, = (3n/Gp)*/?
and free-fall time t ~ (1/4) P, ~ (Gp)”2

Because F, = v2/r =0 V. (r) =or=[(4/3) tGp]*?r
We define Q(r) = o (= const iIn this case) =» solid body rotation
Note that P, = P,



“*Logarithmic potential
We know that many rotation curves are flat at large radii, v, ~ v, SO

with 1y =co ®(r) =V Inr + const

meaning that potential behaves as logarithmic...

“»*Spherical systems
For power law: p = p,(r/a)“ we have:

D) = -[(4nGapy)/(3-w)] (r/2)*% = v.2/ (@-2)

for o >3, M(<r) =2 Infinity for r - 0 =¥ infinite mass at
the origin



ofor o = 2, we have singular isothermal sphere with circular velocity

v (t) = (41 G 2> py)"? = const. at all radii,
yielding @(r) = 4nGap,In(r/a)

“*More specific spherical models

_ Ma
*Hernquist 2rr(r +a)?
Ma
oJaffe

*Plummer sphere




P(R) for
various
spherical
models

4

Radivs {rp)

Hernquist Model




“»* Axisymmetric thin disks (cylindrical r, z)
\/ertical (z) potential near the plane z = 0:
within the disk: p, the volume density at the z = 0 plane

above the disk: InGM = 4xG / o(r) d°r
surface density X(z) v

/ -V - F(r)d°r = / —F(r) - d*S
JV J A4

Using the Gauss theorem, eq.(2-2): pa> Vo

_ o0
0Z

=(, = 4nGp,z = 2nGZ(z) (inside)
=2nGx  (above)

where I = j dz 3(z)
0

Note, unlike spherical potentials,

disk potential depends on the mass outside r y



“*Examples:

*Mestel disk: Z(r) = Z,r/r, has v2(r) = 2nGX,r,= GM(<1)/r

unusual case when v, is independent of M(>r) |

SENEI AN > () = X, "t

fits the light profile in a much more realistic way than Mestel disk,
and has circular velocity (see analytical approximation we used!):

VI(R) = 4xGXoRay’ [To(y)Ko(y) — Li(y) K1 (y)]

where y =1r/2r,, and
|, K are Bessel functions of the 15t and 2"? kind



Kuzmin-Toomre disk:

S(R) = (R z) = ——————

27(R2 + a2)3/2 v B2+ {a+|z])?

Note, because Poisson equation is linear in p, ®:
differences between density-potential pairs and
differentials of density-potential pairs are also p—® pairs

*Toomre disk sequence: of order n can be obtained from
the above Kuzmin disks by differentiation with respect to a2:

eBessel disk: 5(r) = LJO(kF); @(r, z) = exp(—k‘Z‘)JO(kr)

216G



“* Axisymmetric flattened systems

Realistic bulge + disk, etc. systems are neither spherical nor thin disks
Combining both we get flattened potentials

*Miyamoto-Nagali flattened system:

[R2 + (e + B)?]3/2B3
VR?+(a+ B)?

If a=0, we get Plummer sphere,
and
If b =0, we get Kuzmin disk



THE VIRIAL THEOREM

*1llustrations

*general case

*mass determination

*binding energy

*specific heat: gravothermal catastrophe




> lllustrations

«*Circular orbits

Consider the mass m In a circular orbit
around M (>>m)

Multiply by r:

,  GmM

mv =—==> 2K=-W or 2K+W=0

2K W

E =-K, where
BISTCRUCNCI[ON ) = K/|W| = 1/2 = E=K+W > the total energy

Note, that in this case instantaneous value is also time-averaged value
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% Time-averaged Keplerian orbit (elliptical orbits) [l

In general, n changes along the Keplerian orbit §

using r,v,= rv, (@angular momentum conservation)
Taking time averages over an orbit:
n = 0.5

<-W> = <GM/r> = GM /<r> E=-K
and <K> =<0.5v*> = GM/2<r> (as before)




+s*General case

Consider a cluster of N stars with time-dependent potential @(x, t).
Individual energies are not conserved but the total E is. To show this,
we write the 29 law of Newton:

Adding the right-hand sides of egs.(2-4) and (2-5)



Adding the right-hand sides of egs.(2-4) and (2-5)

Note:
division by 2 means that
each pair will contribute one term only to the sum

Adding egs.(2-4) and (2-5):

2-6)

E=K+ W =const




According to eq.(2-6):
the stars in an isolated cluster can change their kinetic and potential
energies, as long as their sum remains constant

The Virial Theorem:
on average, the kinetic and potential energies are in a specific balance

Proof:

Start again with eq.(2-3), with an addition of an external force F.
Next, take scalar product with r; and sum over all stars:




A similar equation would result if we started with the j-force:

where | Is the moment of inertia of the system:

[

Averaging egs.(2-7) and (2-8): the first term on the right-hand side
IS the potential energy W, so

2
1d—i—zK W+Z

2-9
2 dt <>

ext i

25



Taking long-term average of eq.(2-9) over time interval 0 <t < 1:

%{%(r)—%@)} =2<K>+<W> +Zi:< F..-r > Y

As long as the stars are bound to the cluster, the products |r; . v,
and hence |dl/dt|, never exceed some finite limits

Thus, the left-hand side of eq.(2-10) must tend to zero as T—>oo,
giving:

2<K>+<W> +Z< Feixt - >=0. the Virial Theorem

Note: one can distinguish two types of kinetic energy:
-- total K

-- ordered motion

-- random motion



Reviewing conditions for Virial Theorem:

*The system must be self-gravitating

*The system must be In steady state:
orbital timescale << evolution timescale

*Quantities must be time-averaged
(or many objects sampled with random orbital phase)

*The system must be isolated,
or at least embedded in a slowly varying potential

*The system can be collisionless (stars) or collisional (gas)

ALSO: when the total energy Is negative, the self-gravitating system
IS bound




» Mass determination

The most interesting use of the virial theorem is mass determination
of stellar systems

For a system of total mass M and mean squared velocity <v?>:

K=05M <v2>

@

<V:i>=—-W/M = GM/rg defines the gravitational radius r,

But stellar systems don’t have sharp edges!

Define “median radius” r, which encloses half the mass.
For many systems r,,= 0.4 r,, then




»Binding energy

System which is spread out and at resthas E=K =W =20
After settling down (virializing): E = K+W =-K

J

*Energy must be released during the gravitational collapse

*This energy is termed the binding energy — it is needed to
unbind the system

*The value of the binding energy is equal to the remaining K

*The total gravitational energy released is -W, of which half
goes into K and half escapes the system



Examples:

«Collapsing protostars are luminous: they radiate half of their
gravitational potential energy

«Kelvin considered a gravitational origin of Sun’s energy,
via gradual contraction

For a ‘typical’ galaxy: K~ 0.5 Mv2~ 10°" ergs~ 101°Lgx 107 yrs

’

this is 3 107 of the rest mass (this is negligible!)
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» Specific heat of self-gravitating systems

Define the temperature T of self-gravitating system (of N stars)
by analogy with the ideal gas

Note: <v2>=302

where m Is the stellar mass
Kg IS the Boltzmann constant

We use spatially averaged v? and T, for example:
<T>= jp(r)TdV/jp(r)dv

The total kinetic energy Is then K = (3/2) Nkg<T>
Using virial theorem: E =-K, and E =-(3/2) Nkg<T>.
oE 3

The heat capacity of the system is (O = ——Nk,; <01
o<T> 2

Note, by losing energy the system gets hotter!




“*Negative specific heat:

AE <0 S AK >0

Energy decreasing “Temperature” increasing

3 } 2o rAET @ Anglo- Australian Observatory
gy e Photo by David Malin



*Any self-gravitating bound system has a negative heat capacity:

stars, stellar clusters, galaxies, galactic clusters, etc.

*Thermodynamically, such systems exhibit counter-intuitive behavior

e|nitially: thermal equilibrium at T. How stable is this equilibrium?
Note: <v?>=3c? for isothermal sphere

By transferring a small amount of heat dQ > 0 to the bath,
the stellar system will changeto T —-dQ/C =T + dQ/|C]

*The stellar system is now hotter than the bath and
heat continues to flow from hot (system) to cold (bath)

Such system is thermally unstable and experiences a thermal runaway



*»Gravothermal catastrophe: Antonov (1962)
Lynden-Bell & Wood (1968)

Consider: Adiabatic wall

(perfectly reflecting boundary)
Self-gravitating

N-body system

radius:r,

mass: M=N Xm

energy: E




Gravothermal Catastrophe

C <0 ( core = self-gravitating ~ Negative specific heat
\L) C<0
COIEN Meil© : . : :
\ J halo = normal system Positive specific heat
(heat bath) |
\ C>0

C>0

Heat flow from ney
Tcore > Thalo —> core to ha|0 AThamT

'ATcoreT .C<O |

r,>r, ——  ATcore> AThalo extended halo has large heat capacity

" heat flow does not stop!! |

Core-collapse !!
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Onset of instability: heuristical approach:

Halo: C,>0 since no strong self-gravity

Core: C_<0 since confined by gravity
If sudden core heat up = T.>T,, : heat flow from the core to the halo
and the temperatures of BOTH rises

If C,<|C,, T, =dQ/C, rises faster than T, = dQ/C. the heat flow shuts off
If C,>|C,|, T, risesslower than T, = the difference increases
The gravothermal instability sets in at R (= p, /ppoyndary) = 708.61

Is there an instability in the real systems [ Simulation of
" o gravothermal
(stars and gas). n catastrophy

+The gravothermal catastrophe in a gas: [ NGC
develops through heat conduction, i
—>growth time ~ thermal diffusion time & 2

o|n stellar systems:
thermal diffusion is ~ relaxation time



Surface brightness for globular clusters: evidence for core collapse

] T gy Power-law

i profile
Sy
3

Seeing

IILII

i

NGC 8388

5 1 . . 5 1 1.5 2
log r (arcsec) log r (arcsec)

About 20% of globular clusters show cuspy cores
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