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NOTE: we first consider collisionless dynamics:   

•Definition of a collision: here we mean star-star deflection, not 
                                       a direct impact 

•For a collisionless case: stars are assumed to move in a completely 
                                      smooth background potential 

•For galaxies this almost always is a very good approximation 



  

How to model motions of 1010 stars in a galaxy? 

 Direct N-body approach (as in simulations) 
 At time t particles have (mi,xi,yi,zi,vxi,vyi,vzi), i=1,2,...,N 

 (feasible for N<<106 ) 
 
 

 Statistical or fluid approach (N very large) 
 At time t particles have a spatial density distribution 

n(x,y,z)*m,   
 at each point have a velocity distribution G(vx, vy, vz) 

 



•Essentially impossible to recover the DF from observations: 
  one constraint:  f(r,v,t) > 0, as stars exists! 

The distribution function (DF) 

•The system is fully described by its distribution function or  
  phase space density: 

vrvr 33 dd)t,,(f -- number of stars at  r  with  v  at time  t 
   in range  d3r and d3v 

•Knowledge of the DF  = holy grail, and gives a complete info 
                                          about the system 
 
•In practice: we observe  Σ(r), v(r), σ(r) 



  

Phase space of stars (2-D example)  

 N identical particles moving in a small bundle in   
phase space (Volume =Δx Δ v)  

 phase space deforms but maintains its area 
 
 

 
 

 
 Gap widens between faster and slower stars 

 but the phase volume and number of stars are constants 

 +x front 

 vx 

x 

+vx Fast 



  

Liouville theorem 

 Phase space density of a group of stars is constant  
  f  = N / Δx Δvx = const. 



 Collisionless Boltzmann (Vlasov) equation 

stars are not created/destroyed since the flow preserves  
the number of stars 

•Continuity equation: 

stars do not jump across the phase space 

view the DF as a moving fluid of stars in 6-D space (r,v) 

•Consider a 1-D example using x and vx and remember that 
  f  is a number density 

focus on a small element of phase space  dx dvx  



the net flow (change) due to the velocity gradient (along v):  

•During  dt, the net flow (change) along  x  is: 

the sum of these two equations is equal to the net change in  f 

dividing by dx dvx dt 
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but since  

adding  y  and  z  dimensions, we arrive at  
collisionless Boltzmann equation: 

(3-2) 

eq.(3-2) describes how DF changes with time as a result of: 
conservation of stars 
stars follow smooth orbits 
flow of stars through  r  defines implicitly  v (=dr/dt) 
flow of stars through  v  is given explicitly by   )(rΦ∇−

(3-1) 



Since   t/f ∂∂ as an Eulerian (partial) differential, it describes 
change in DF at a point in phase space 

Now, consider Lagrangian (total or convective) differential, 
                            Df/Dt = df/dt 

This describes the change in  f  as we follow along  
the ‘orbit’ through phase space  

This Lagrangian derivative is nothing else but the left-hand side 
of the collisionless Boltzmann equation: 

The phase space density  f  along the stellar orbit is constant 
The flow is incompressible in phase space (Louville theorem) 



For example: 

if the region gets denser,  σ  (v-dispersion) will increase 
if the region expands, σ  will decrease 

marathon race:  starts --- n high,   highv∆
ends --- n low, lowv∆



The Jeans equations 

•The collisionless Boltzmann equation is of a limited use: 

the constraints it provides are insufficient to find  f(r,v,t) 

the complexity of  f  makes it observationally inaccessible 

•What we observe are: 

mean velocities  <v> 
velocity dispersions  σ  (which are   <v2>=σ2+<v>2) 

stellar densities  n  or  ρ 

Need to rewrite Boltzmann equation in terms of these quantities  



These quantities are ‘hidden’ within  f   need to extract them 
                                                               by taking averages or moments 
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New variables: 

 0th momentum in v 

 1st momentum in v 



Fluids: 1-D for comparison 

Example: 

Integrate the 1-D  collisionless Boltzmann equation (3-1) over  vx: 

0th momentum 
continuity eq. 
star number 

where  n = n(x,t)  is the space density 
           <vx>  drift velocity along  x-axis 

Multiply eq.(3-1) by  vx and integrate over  vx,   
insert the 0th momentum, rearrange terms:   

1st  momentum 

where  σx
2  is the velocity dispersion 

            about mean velocity: 
            <vx

2> = <vx>2 + σx
2 

(3-1) 



Repeating this in 3-D requires a little more care (see BT 4.2): 

where summation convention applies: 
summation over repeated indexes 

Jeans equation for coordinate  j 

i = 1,2,3  and  j = 1,2,3 refer to x,y,z   (e.g., x2 = y,  v2 = vy, etc)  

This Jeans equation is similar to 2nd Newton’s law  dv/dt = F/m with: 
left-hand side is the derivative of <v> 
right-hand side contains force terms 

(3-3) 

This tensor is symmetric (check the righ hand side) 



Fluids: 1-D for comparison 
Compare this to Euler’s eq. for fluid flow 

Euler for fluid: 

Jeans for stars 
      eq.(3-3) 

completely analogous! •nσij
2   is a stress tensor which clearly plays 

         the role of anisotropic pressure 
•In a fluid, pressure is scalar and therefore always isotropic 
  for stellar ‘fluid,’  this tensor can be anisotropic 
σij   is symmetric tensor, and if  σ11 = σ22 = σ33  then the pressure  
is isotropic  Jeans and Euler eqs. are identical 

•For stellar systems there is no equation of state  
  linking pressure σij

2 to ρ    



Applications of the Jeans equations 

•Deriving  M/L  profiles in spherical galaxies 
•Deriving the flattening of a rotating spheroids with  
  anisotropic velocity dispersion 
•Analysis of asymmetric drift 
•Surface (and volume) density in the galactic disk 
•Analysis of the local velocity dispersion 

Spherically-symmetric steady state systems  

•Using Jeans 
 eq.(3-3) 

Steady state:  the 1st term is equal zero 
Symmetry:    <vr> = <vθ> = 0  <vr

2> = σr
2 

                                                                                 and <vθ
2> = σθ

2 



In spherical polar coordinates, the steady state Jeans equation is 
(for spherically-symmetric stellar system): 

Introducing the anisotropy parameters 
2
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which is equivalent to the equation of  hydrostatic support: 

dp/dr + anisotropic correction + centrifugal correction = Fgrav 

Replacing  

(3-4) 



•Going further: 
dΦ/dr  GM(<r)/r2 = vc

2/r 
                                     vc – circular velocity                           

And re-writing the 1st term in eq.(3-4) 

in logarithmic gradients: 

The last equation is similar to hydrostatic support in ideal gas 
with p = nkT 

The equivalencies are: 
dr/dp)p/n()r(lnd/)T(lnd)r(lnd/)n(lnd

T2
r

≡+
≡σ

and where  2β  and  vrot
2/r  are anisotropy and rotation corrections 
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